期刊文献+

强非局域介质中高斯光束参量演化规律的分析 被引量:14

Analysis of Gaussian Beam Parameters Evolution Law in Strongly Nonlocal Media
原文传递
导出
摘要 光束在非局域非线性介质中传输时遵循非局域非线性薛定谔方程(NNLSE)。对应用变分法得到的傍轴高斯光束在强非局域非线性介质中的束宽演化方程进行了简化,消除了由于强非局域非线性介质响应函数作泰勒级数展开产生的势函数假根的影响;求出了傍轴高斯光束各参量的演化表达式。结果表明,傍轴高斯光束在强非局域非线性介质中传输时束宽的近似演化规律为正弦函数和余弦函数,并存在一个临界功率。当初始功率等于临界功率时,可以得到空间光孤子。对于一般情形,束宽作周期性压缩或展宽变化。当束宽比α≤0.3时,所得结果与非局域非线性薛定谔方程的数值解基本一致。 The propagation of the optical beam in the nonlocal nonlinear media is governed by the nonlocal nonlinear Schrodinger equation (NNLSE),In this paper, the paraxial Gaussian beam width evolution equation, which is obtained by means of variational approach,is simplified, the affection of the potentially functional spurious root,which arises from the Taylor's series expansion of the strongly nonlocal nonlinear material response function, is eliminated, and the formulae of the paraxial Gaussian optical beam parameters' evolution in the strongly nonlocal nonlinear media are obtained. The result shows that the beam width varies as sine-function and cosine-function, and there exists a critical power. When the input power equals the critical power, a spatial optical soliton occurs; in general, the narrowing and broadening of the beam width is periodical;when α≤0.3, the result of beam width evolution is almost coincident with the numerical solution of the nonlocal nonlinear Schrodinger equation。
出处 《中国激光》 EI CAS CSCD 北大核心 2005年第8期1059-1062,共4页 Chinese Journal of Lasers
基金 国家自然科学基金(10474023) 广东省自然科学基金面上项目(031516)和重点项目(04105804)资助课题。
关键词 非线性光学 傍轴高斯光束 强非局域介质 参量演化规律 空间孤子 nonlinear optics paraxial Gaussian beam strongly nonlocal media parameters evolution law; spatial soliton
  • 相关文献

参考文献16

  • 1A. W. Snyder, D. J. Mitchell. Accessible solilons[J].Science , 1997, 276(5318) : 1538-1511.
  • 2Y. R. Shen. Solitons made simple[J].Science,1997, 276(5318) : 1520.
  • 3S. Abe, A. Ogura. Solilary waves and their critical behavior in a nonlinear nonlocal medium with power-law response[J].Phys. Rev. E. 1998. 57(5):6066-6070.
  • 4D. J. Mitchell, A. W. Snyder. Soliton dynamics in a nonlocal medium [J]. J. Opt. Soc.Am.B, 1999,16(2):236-239.
  • 5W. Krolikowski, O. Bang. Solitons in nonlocal nonlinear media: Exact solution[J].Phys,Rev.E. 2000, 63(1):016610-1~016610-6.
  • 6W. Krolikowski, O. Bang, J. J. Rasmussen et al..Madulational instability in nonlocal nonlincer Kerr media[J].Phys. Rev. E, 2001. 64(1):016612-1~016612-8.
  • 7O.Bang, W. Krolikowski, J. Wyller et al.. Collapse arrest and solimn stabilization in nonlocal nonlinear media [J]. Phys.Rev.E.2002, 66(4):046619-1~016619- 5.
  • 8M. Peccianti, C. Conti, G. Assanto et al.. All-optical switching and logic gating with spatial solitons in liquid crystals[J]. Appl. Phys.Lett.2002.81(18):3335-3337.
  • 9G. Assamo, M. Peccianti.C. Conti. Spatial optical solitons in bulk nematic liquid crystals[J]. Acta Physica Polonica. A,2003, 103(2-3):161-167.
  • 10M. Peccianti, C.Conti, G. Assanto. Optical multisoliton generation in nematic liquid crystals[J].Opt. Lett. , 2003,28(22):2231-2233.

二级参考文献36

共引文献74

同被引文献216

引证文献14

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部