期刊文献+

一种基于系统调用异常检测的改进算法

An Improved Method Based on System Call Anomaly Detection
下载PDF
导出
摘要 基于系统调用的异常检测方法只能检测到攻击的发生,不能判断出攻击的性质和目的。针对这个问题,提出了一种算法(对系统调用序列和传统算法检测到的攻击进行再分析),基本思路是在训练时统计系统调用的频率信息,建立程序正常运行时的文件访问分布模型,并在系统调用的层次上提出一种攻击的分类方法,在检测时以传统的基于系统调用的异常检测方法为基础,结合训练时得到的信息,确定攻击所属的类别和攻击的优先级。实验结果表明,该方法能有效预测出攻击的性质和目的,并改善了原方法的检测率和误报率等指标。 System call based anomaly detection can not predict the intent of attacks, to solve this problem, a further analysis method was proposed, which conducted further analysis on system call sequence and the detection results of traditional method. The basic idea is to record system call frequency information,construct file access distribution models of properly running programs at train phase, at detection phase, traditional methods were modified to take these information and models into account to determine the classes of attacks. Experiments show that our method can effectively predict attack' s intent, while its detection rate and false positive performance is comparable to or better than the other approaches.
作者 罗宁 喻莉
出处 《电子工程师》 2005年第7期51-55,共5页 Electronic Engineer
关键词 系统调用 异常检测 误用检测 关联 分析算法 system call, anomaly detection, misuse detection, correlation, analysis arithmetic
  • 相关文献

参考文献10

  • 1Hofmeyr S A , Forrest S , Somayaji A . Intrusion Detection Using Sequences of System Calls. Journal of Computer Security, 1995, 6(3) :151 - 180
  • 2Lee W , Stolfo S J . Data Mining Approaches for Intrusion Detection. In: Proceedings of the7 th USENIX Security Symposium. San Autonio(TX, USA), 1998
  • 3Warrender C, Forrest S, Pearlmutter B. Detecting Intrusions Using System Calls: Alternative Data Models. In: Proceedings of IEEE Symposium on Research in Security and Privacy.Oakland(CA, USA), 1999. Piscataway ( NJ, USA): IEEE,1999. 133 - 135
  • 4Ghosh A K, Schwartzbard A. A Study in Using Neural Networks for Anomaly and Misuse Detection. In:Proceedings of the 8th USENIX Security Symposium. Washington (DC,USA), 1999
  • 5Wagner D, Dean D. Intrusion Detection via Static Analysis.In: Proceedings of the 2001 IEEE Symposium on Research in Security and Privacy. Oakland(CA, USA),2001. Piscataway (NJ, USA): IEEE, 2001. 156-168
  • 6Giffin J T, Jha S, Miller B P. Detecting Manipulated Remote Call Streams. In: Proceedings of the 11 th USENIX Security Symposium. San Francisco(CA, USA), 2002
  • 7Sekar R, Bendre M, Dhurjati D, et al. A Fast Automatonbased Method for Detecting Anomalous Program Behaviors.In: Proceedings of the IEEE Symposium on Research in Security and Privacy. Oakland ( CA, USA ) , 2001. Piscataway (NJ, USA): IEEE, 2001. 144 - 155
  • 8Feng H, Kolesnikov O M, Fogla P, et al. Anomaly Detection Using Call Stack Information. In: Proceedings of the 2003IEEE Symposium on Research in Security and Privacy. Berkeley ( CA, USA ), 2003. Piscataway ( NJ, USA ): IEEE,2003. 62 - 75
  • 9Lindqvist U, Jonsson E. How to Systematically Classify Computer Security Intrusions. In: Proceedings of the 1997 IEEE Symposium on Research in Security and Privacy. Oakland (CA, USA), 1997. Piscataway(NJ, USA): IEEE, 1997.154 - 163
  • 10Sekar R, Cai Y. Classification of CERT/CC Advisories from 1993 to 1998. http://seclab. cs. sunysb. edu/sekar/papers/cert. htm, 2003

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部