期刊文献+

分数卷积及其光学实现

Fractional Convolution and Its Optical Implementation
原文传递
导出
摘要 将频域中常规卷积的定义推广到分数域中,得到了分数卷积的频域定义,给出了它的空域表达和光学实现装置,进行了计算机模拟实验。结果表明:分数卷积与常规卷积相比较其峰值降低,但对底座的展宽作用没有变化。此结论对完善分数傅里叶的知识体系具有重要的理论意义,同时为滤波器的设计提供一个新的理论指导。 By generalizing the conventional convolution of frequency domain to fractional domain, the fractional convolution is defined, some optical implementations of fractional convolution are suggested and demonstrated with computer simulations. The results show that the fractional convolution declines the peak of convolution and does not affect the width of convolution, compared with conventional convolution. This will improve the theory of fractional Fourier transform and guide the filter design.
出处 《激光与光电子学进展》 CSCD 北大核心 2005年第8期26-28,共3页 Laser & Optoelectronics Progress
基金 山西省自然科学基金资助项目(20011005)
关键词 分数卷积 光学实现 分数傅里叶变换 常规卷积 卷积 分数 计算机模拟实验 理论意义 知识体系 理论指导 fractional convolution optical implementation fractional Fourier transform conventional convolution
  • 相关文献

参考文献7

  • 1Granieri S, Trabocchi O, sicre E E. Fractional Fourier transform applied to spatial filtering in the Fresnel domain [J]. Opt.Commun., 1995, 119:275~278
  • 2Mendlovic D, Ozaktas H M, Lohmann A M. Fractional correlation [J]. J. Appl. Opt., 1995, 34:303~309
  • 3Ozaktas H M, Barshan B, Mendlovic D et al.. Convolution, Filtering, and Multiplexing in Fractional Fourier Domains and their relation to chirp and wavelet transforms[J]. J. Opt. Soc. Am., 1994, 11(2):547~549
  • 4Zayed A I. Product and convolution theorems for the Fractional Fourier transform[J]. Ie. Sig. Pro. Let., 1997, 4(1): 15~17
  • 5Zayed A I. A convolution and product theorem for the Fractional Fourier transform[J]. Ie. Sig. Pro. Let., 1998, 5(4):101~103
  • 6Mendlovic D, Ozaktas H M. Fractional Fourier transform and their optical implementation :I[J]. J. Opt. Soc. Am,(A), 1993, 10(9): 1875~1881
  • 7Ozaktas H M, Mendlovic D. Fractional Fourier transform and their optical implementation: Ⅱ [J]. J. Opt. Soc. Am. (A), 1993, 10(12):2522~2530

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部