期刊文献+

用偏微分方程作图像分析与处理 被引量:4

Application of Partial Difference Equation in Image Analysis and Processing
原文传递
导出
摘要 从偏微分方程去噪模型出发,论述了噪声抑制的原理,去噪方法与正则化方法和小波萎缩方法之间的联系;并根据这种联系,从正则化模型的角度分析了用偏微分方程进行图像复原以及超分辨等方面的应用。最后展望了发展前景。 The application of partial difference equation (PDE) in image analysis and processing is discussed The PDE models for image denoising, the principle of PDE denoising their reduction approach and development processes are introduce4 The relations of PDE, regularization and wavelet shrinkage are analyzed, the application of PDE in image restoration and image superresolution are introduced a preview of its development is given, and point out that the best way to evolve PDE is combining PDE with wavelet, regularization and basis pursuit to get a new mode]. An example of combining these models is given and good result in signal denoising is obtained.
出处 《激光与光电子学进展》 CSCD 北大核心 2005年第8期36-40,共5页 Laser & Optoelectronics Progress
基金 全国优秀博士论文作者专项基金(200140)国家自然科学基金(60272013)资助课题。
关键词 图像处理 偏微分方程 正则化 小波 图像复原 分析与处理 正则化方法 去噪方法 噪声抑制 小波萎缩 image processing partial difference equation regularization wavelet
  • 相关文献

参考文献21

  • 1Olivier F. Mathematical Problems in Image Processing: Partial Differential Equations and Calculus of Variations. Springer, 2001
  • 2Weickert J. A review of nonlinear diffusion filtering in scale-space theory in computer vision. Lecture Notes in Computer Science, 1997, 1252:3~28
  • 3Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629~639
  • 4Wei G W. Generalized perona-malik equation for image restoration. IEEE Signal Processing Lett., 1999, 6(7): 165~167
  • 5Weickert J. Theoretical foundations of anisotropic diffusion in image processing. Computing, 1996, 11: 221~236
  • 6Weickert J. Coherence-enhancing dffusion filtering. International J. Computer Vision, 1999, 31(2/3): 111~127
  • 7Weickert J. Coherence-enhancing diffusion of colour Images. Image and Computer Vision, 1999, 17(3/4): 199~210
  • 8You Yu-Li, Kaveh M. Fourth-order partial differential equations for noise removal. IEEE Transaction on Image Processing,2000, 9(10): 1723~1730
  • 9Lysaker M, Lundervold A, Tal X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing, 2003, 12(12): 1579~1590
  • 10Gilboa G, Zeevi Y Y, Sochen N A. Complex diffusion process for image filtering. Scale-Space'01, LNCS 2106, Springer-Verlay,2001. 299~307

二级参考文献55

  • 1[1]L Rudin,S Osher,E Fatemi.Nonlinear total variation based noise removal algorithms[J].Physica D,1992;60:259~268
  • 2[2]S Osher,L Rudin.Feature-oriented image enhancement using shock filters[J].SIAM J Num Analysis,1990;27:919~940
  • 3[3]L Vese.A study in the BV space of a denoising-deblurring Variational problem[J].Appl Math Optim,2001;44:131~161
  • 4[4]T F Chan,C K Wong.Total variation blind deconvolution[J].IEEE trans on Image Processing,1998;7(3):370~375
  • 5[5]P Blomgren,T F Chan.Color TV:total variation methods for restoration of vector valued images[J].IEEE Trans on Image Proc,special issue on geometry driven diffusion and PDEs in image processing,1998-03
  • 6[6]P Perona,J Malik.Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans Pattern Anal.Machine Intell,1990;12(7):629~639
  • 7[7]M Black,G Sapiro,D Marimont et al.Robust anisotropic diffusion[J].IEEE Trans on Image Proc,1998;7(3):421~432
  • 8[8]A Chambolle,P L Lions.Image recovery via total variation minimization and related problems[J].Numerische Mathematik,1997;76:167~188
  • 9[9]R Cohen,I Daubechies,P Vial.Wavelets on the interval and fast wavelet transforms[J].Applied and Comput Harmonic Anal,1993;(1):54~81
  • 10[10]S Mallat.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans Pattern Anal Machine Intell,1989;(11):674~693

共引文献24

同被引文献44

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部