期刊文献+

一种基于影响图学习其他Agent模型方法 被引量:2

New way of learning models of other agent based on influence diagrams
下载PDF
导出
摘要 为了实现动态环境中Agents之间的有效协作,Agent必须能够识别其他Agent的模型。用影响图作为Agent模型表示工具,给定Agent的一个初始模型和它的历史行为,在能力、优先和信念学习的基础上来构建新的模型。学习的方法是用其他Agent的历史行为作为训练集,利用神经网络学习技术来修改效用函数。 To achieve effective coordination among agents in dynamic environments, agents may have to recognize the models of other agents. This paper gives three strategies to create a new model of other agent, which is based on learning of its capabilities, preferences and beliefs and also gives an initial model and the agent's behavior history, using influence diagrams as a modeling representation tool. The method of preference learning attempts to modify the other agent's utility function by incorporating a neural network learning technique, using observed behavior history of other agent as training set.
作者 张润梅 王浩
出处 《辽宁工程技术大学学报(自然科学版)》 EI CAS 北大核心 2005年第4期577-579,共3页 Journal of Liaoning Technical University (Natural Science)
基金 安徽省自然科学基金资助项目(03042305)
关键词 影响图 多智能体系统 能力学习 优先学习 influence diagrams multi-agent system(MAS) capability learning preference learning
  • 相关文献

参考文献8

  • 1刘启元,张聪,沈一栋.信度网近似推理算法(上)[J].计算机科学,2001,28(1):70-73. 被引量:7
  • 2王兆红,肖冬荣.分部式决策系统中Agent技术的应用[J].辽宁工程技术大学学报(自然科学版),2003,22(3):354-356. 被引量:5
  • 3Sen S. Evolution and learning in multi-agent systems[J]. International Journal of Human-Computer Studies, 1998,48(1):1-7.
  • 4Noh Sand Gmytrasiewicz P J. Implementation and evaluation of rational communicative behavior in coordinated defense[A].Oren Etzioni,J(o)rg P.Müller and Jeffrey M.Bradshaw. Proceedings of the third annual conference on Autonomous Agents [C]. New York, USA:ACM Press, 1999.123-130.
  • 5Noh S and Gmytrasiewicz P J. Agent modeling in antiair defense[A]. A.Jameson C.Paris and C. Tasso. Proceedings of the Sixth International Conference on User Modeling[C]. Sardinia, Italy: Springer-Verlag Telos, 1997.389-400.
  • 6Howard R A. and Matheson J E. Readings on the principles and applications of decision analysis(Vol 2) [M]. CA: Strategic Decisions Group, Menlo Park. 1984.719-762.
  • 7J.Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference [M]. California CA: Morgan Kaufmann publishers, 1988.367-383.
  • 8陆宝春,张卫,徐永新.基于知识影响图的多Agent集成诊断与决策[J].南京理工大学学报,2003,27(3):281-285. 被引量:3

二级参考文献19

  • 1Scott-Morton M S. Management Decision Systems:Computer Based Support for Decision Making[C].Dividion of Research,Harvard University MA,1971.
  • 2Hayes-Roth B. An Architecture for Adaptive Intelligent Systems[M].San Mateo:.In Proc of Workshop on Innovative Approaches to planning, 1990.422-431.
  • 3Scher J M. Distributed Decision Support Systems for Management and Organization.DSS---81 Trans, Ist Int Conf on DSS, 1981,130-140.
  • 4Thomas R C, Bums A. The Case for Distributed Decision Maldng System. The Computer Journal, 1982,25(1): 148-152.
  • 5Swanson E B. Distributed Decision Support Systems: A Perspective.[J].In: proc 23rd Annual Hawaii Int Conf on System Sciences, 1990,(3): 129-136.
  • 6Chung H M, Mahapatra R, Marin G. Distributed Decision Support Systems: Characterization and Design Choices.[J].In: Proc 26th Annual Hawaii Int Conf on System Sciences, 1993,(3):660-667.
  • 7Shoham Y. Agent Oriented Programming[J].Artificial Intelligence ,1993,(60): 51-92.
  • 8Sycara K P. Multiagent Systems. [J].AAAI,1998,(4):79-92.
  • 9Fung R,Uncertainty in Arrificial Intelligence 5,1999年,209页
  • 10Huang C,International Journal of Approximate Reasoning,1994年,11卷,1页

共引文献11

同被引文献12

  • 1詹原瑞.决策分析中的影响图[A].复杂巨系统理论·方法·应用--中国系统工程学会第八届学术年会论文集[C].1994.
  • 2D Koller,B Milch.Mttlti-agent influence diagrams for representing and solving games[C].IJCAI,Seattle,USA,2001.
  • 3Sahin F,Bay J S.Learning from experience using a decision-theoretic intelligent Agent in multi-Agent systems[A].In:Mountain Workshop on Soft Computing in Industrial Applications[C].San Diego:IEEE,2001:109-114.
  • 4Sahin F, Bay J S. Learning from experience using a decision-theoretic intelligent Agent in multi-Agent systems [ A ]. In: Mountain Workshop on Soft Computing in Industrial Applications[ C]. San Diego: IEEE, 2001. 109-114.
  • 5Carmel D, Markovitch S. Learning models of intelligent Agents [ J ]. International Journal of Expert Systems, 1996, 14 (1): 62-67.
  • 6Chajewska U, Koller D, Ormoneit D. Learning an Agent's utility function by observing behavior[ A]. In: Proceedings of the Eighteenth International Conference on Machine Learning[ C ]. Kanagawa, Japan: IEEE, 2001. 35-42.
  • 7Nielsen T D, Jensen F V. Sensitivity analysis in influence diagrams [ J ]. IEEE Trans. on Systems, Man and Cybernetics, Part A, Systems and Humans, 2003, 33 (2) : 223-234.
  • 8Applegate D, Kannan R. Sampling and integration of near log-concave functions[ A]. In: Proceedings of the 23rd Annual ACM Symposium on Theory and Computing[ C]. New Orleans: ACM Press, 1991. 156-163.
  • 9董彦非,申洋,张恒喜.空战机动决策中的影响图方法[J].电光与控制,2001,8(1):49-53. 被引量:16
  • 10陆宝春,张卫,徐永新.基于知识影响图的多Agent集成诊断与决策[J].南京理工大学学报,2003,27(3):281-285. 被引量:3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部