期刊文献+

状态估计中的采样型滤波器 被引量:1

Sampling-Based Filters for State Estimation
下载PDF
导出
摘要 基于采样方法的滤波器在现代非线性滤波领域内得到了广泛应用。其共同特点是利用抽样粒子点模拟系统状态的概率分布,从而不受状态先验分布假设(如高斯假设)的约束,拥有更高的滤波精度和更广的应用范围。论文在抽样意义下重新论述了确定性采样滤波器如高斯和型滤波器和UKF,以及基于随机模拟的粒子滤波器,并对这三种滤波器及其衍生方法在状态估计领域(滤波)的应用进行了精度和计算负荷分析。某Benchmark信号处理算例验证了该类方法的估计精度和扩展能力。给出基于实际系统需求一般性评价和选用原则。 Sampling-based filtering approaches are widely used for the on-line estimation problem of non-Gaussian nonlinear systems,They,including GHF and UKF as positive sampling algorithms and particle filter as a stochastic sampling algorithm,commonly take advantages of matching the prior density by special sampling methods.In this paper,theoretical analysis and experimental results on these three filters are proposed to show performance on coping with non-gauss nonlinear filtering problems;moreover ,guidance or suggestions may be adopted on accordance with practical appliance requisitions。
出处 《计算机工程与应用》 CSCD 北大核心 2005年第23期70-72,共3页 Computer Engineering and Applications
关键词 UKF 高斯滤波器 粒子滤波器 Unscented Kalman Filter,Gaussian-Hermite Filter,Particle Filter
  • 相关文献

参考文献11

  • 1S J Julier,J K Uhlmann,H F Durrant-Whyten.A New Approach for Filtering Nolinear System[C].In:The Proceedings of the American Control Conference, Seattle, Washington, 1995 : 1628-1632.
  • 2S J Julier.A skewed approach to filterin[C].In:Proc Aero Sense:12th Int Symp Aerosp/Defense Sensing,Simulat Contr Orlando,FL,1998.
  • 3Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation. Proceedings of the IEEE,2004;92(3):401-422.
  • 4Michael Montemerlo,Sebastian Thrun.An Improved Particle Filtering Algorithm for Simultaneous lzcalization and Mapping that Provably Converges.IJCAI-2003.
  • 5Yang Feng,Ye Liang,Pan Quan et al.UT Method for Space Alignment Problem[C].In:The Proceedings of the 23rd China Control Conference, Wuxi, China, 2004.
  • 6A Doucet,S Godsill,C Andrieu.On sequential Montecarlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000;10(3): 197-208.
  • 7Yong Rui,Yunqiang Chen.Better proposal distributions:object tracking using unscented particle fiher[C].In:the Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001-12 ; 2:786-793.
  • 8Jayesh H Kotecha,Petar M Djuric.Gaussian Sum Particle Filtering For Dynamic State Space Models[C].In:the Proceedings of 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing, 2001-01 ;6:3465 -346 8.
  • 9E A Wan,R van der Merwe.Kalman Filtering and Neural Networks, Chapter 7:The Unscented Kalman Fiher[M].S Haykineds,Wiley Publishing, 2001.
  • 10Alspach D,Sorenson H.Nonlinear Bayesian estimation using Gaussian sum approximations[J].Automatic Control,IEEE Transactions on, 1972; 17(4) :439-448.

二级参考文献9

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25.
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995.
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356.
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com.
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997.
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com.
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000.
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,.

共引文献76

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部