期刊文献+

渐近拟非扩张映象三步Ishikawa型迭代序列的收敛性

The Convergence of Three-step Iterative Sequence for Asymptotically Quasi-non-expansive Mapping
下载PDF
导出
摘要 本文在凸度量空间中讨论三步Ishikawa型迭代序列在渐近拟非扩张映象下的收敛性,给出了收敛的充分必要条件。 In this paper, the writers provide some sufficient and necessary conditions for three -step Ishikawa interative sequences of asymptotically quasi - non - expansive mapping with convergent to fixed pints in convex metric space.
出处 《涪陵师范学院学报》 2005年第5期50-52,共3页 JOurnal of Fuling Teachers College
关键词 三步Ishikawa型迭代序列 渐近拟非扩张映象 凸度量空间 不动点 three -step iterafive sequence convex metric space asymptotically quasi -non -expansive mapping
  • 相关文献

参考文献11

  • 1田有先,张石生.凸度量空间中拟压缩映象具误差的Ishikawa型迭代序列的收敛性[J].应用数学和力学,2002,23(9):889-895. 被引量:11
  • 2[2]Liu Q H. neratives equences for asymptotically quasinonexpansive mappings[J]. Journal of Mathematical and Applications,259 (2001) 1 - 7.
  • 3[3]Xu Band Noor MA. Fixed- point nerations for asymptotically nonexpansive mappings in Banach Ispaces[J] . Joumal of Mathematical and AppUcatons, 267 (2002)444 - 453.
  • 4[4]Noor M A. new approximation schemes for general variational inequalities [J]. J. Math. Anal. Appl, 251 (2000),217 -229.
  • 5[5]Bose S C. Weak convergence to the fixed point Of an asymptoticlly nonexpansive map[J]. Proc. Amer. Math. SOC, 68(1978), 305 - 308.
  • 6[6]Chidume C E and Moor C. Fixed point iteration for pseudocontractive maps[J] . Proc. Amer. Math. SOC. 127(1999),1163 - 1170.
  • 7[7]Ishikawa S. Fixed point by a new iteration[J]. Proc Amer.Math. SOC. 44(1974),147-150.
  • 8[8]Liu Q H. Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicomractive mappings [J]. NonlinearAnal, 26( 1996), 1835 - 1842.
  • 9[9]Rhoades B E. Comments on two fixed point iteration methods [J]. J. Math. Anal. Appl, 56(1976) ,741 -750.
  • 10[10]Schu J. neral : ive constmction of fixed points of asymptotically nonexpansive mappings[J] . J. Math. Anal. Appl, 158(1999) ,407 - 413.

二级参考文献11

  • 1[6]XU Hong-kun.A note on the Ishikawa iteration scheme[J].J Math Anal Appl,1992,167(2):582-587.
  • 2[7]Rhoades H E.Comments on two fixed point iteration methods[J].J Math Anal Appl,1976,56(2):741-750.
  • 3[8]Naimpally S A, Singh K I.Extensions of some fixed point theorems of Rhoades[J].J Math Anal Appl,1983,96(2):437-446.
  • 4[9]LIU Qi-hou.On Naimpally and Singh's open questions[J].J Math Anal Appl,1987,124(1):157-164.
  • 5[10]LIU Qi-hou.A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[J].J Math Anal Appl,1990,146(2):301-305.
  • 6[11]Takahashi W.A convexity in metric space and nonexpansive mappings Ⅰ[J].Kodai Math Sem Rep,1970,22(1):142-149.
  • 7[1]Chang Shi-sheng, Cho Y J, Jung J S, et al.Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces[J].J Math Anal Appl,1998,224(1):149-165.
  • 8[2]Ciric L B.A generalization of Banach's contraction principle[J].Proc Amer Math Soc,1974,45(1):267-273.
  • 9[3]Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive mappings[J].J Math Anal Appl,1998,228(1):254-264.
  • 10[4]Chidume C E.Global iterative schemes for strongly pseudo-contractive maps[J].Proc Amer Math Soc,1998,126(9):2641-2649.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部