期刊文献+

一种基于转导的预测算法及其在软件性能测试中的应用 被引量:1

A Transductive Based Prediction Algorithm and Its Application in Software Performance Testing
下载PDF
导出
摘要 通过对转导推理理论的分析,设计了一种基于转导推理的预测算法。软件系统性能测试中的某些领域,如基于有限的历史测试数据,在某个特定条件下对系统响应时间的测试和分析,与转导推理具有相同的应用前提条件和应用目标,即利用小样本测试数据集,计算感兴趣处的结果。基于这一点,将所设计的算法应用在实际系统中的软件性能测试模块,并取得了一定的价值。 Through the analysis of transductive inference theory, the paper designs a transductive inference based prediction algorithm. Some fields of software system performance testing and analysis, for example, response time testing and analysis under a specific condition using a limited historical testing sample set, have the same application prerequisite and application target of transductive inference, i.e., computing specific interested results from a relatively small sample testing set, so the algorithm is applied into some fields of software system performance testing and some values are created.
出处 《计算机工程》 CAS CSCD 北大核心 2005年第16期170-172,共3页 Computer Engineering
基金 国家重点实验室网上合作研究平台专项基金资助项目(2003DEA5G040) "PresidentialFoundationofGraduationSchoolofChineseAcademyofScience"专项基金资助项目(YZJJ200206)
关键词 转导推理 预测算法 性能测试 系统响应时间 Transductive inference Prediction Performance testing
  • 相关文献

参考文献2

二级参考文献22

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999.

共引文献102

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部