期刊文献+

基于LQR理论的电磁轴承控制系统鲁棒稳定性分析

Robust Stability Analysis of the Active Magnetic Bearings Control System Based on the LQR Theory
下载PDF
导出
摘要 线性最优控制理论中采用的数学模型与实际物理模型总存在一定的差异,据此设计的控制参数不一定能满足实际系统稳定性的需要。针对这一问题,提出了一种分析线性最优控制系统鲁棒稳定界限的方法,并将其应用在基于LQR理论的电磁轴承控制系统的鲁棒稳定性分析中。结果表明:电磁轴承控制系统对模型矩阵摄动的鲁棒性在参数α确定时仅与加权矩阵Q、R的相对大小有关;选择较小的参数α和相对于加权矩阵R较大的Q阵、传感器采取外侧安装方式有利于提高电磁轴承控制系统对模型矩阵摄动的鲁棒性。此结论为主动电磁轴承控制器的设计和结构的设计提供了一定的理论依据。 In this paper,it was proposed that a method of analyzing the robustness of the linear quadratic state optimal control system with the view of solving the problem that the control parameters don't meet the necessity of the practical system stability because the mathematical model adoped in the design of LQR system is different from the practical system. And this method was applied in the analysis of robust stability bound of the magnetic bearings control system based on the LQR theory . The results show that the model perturbation robustness of the magnetic bearings control system is only relative to the comparative value of the weight matrix Q and R with the parameter a confirmed. It can enhance the matrix perturbation robustness of system with the small parameter a ,the weight matrix Q larger than R and the outer-located sensors. The analytical results provided the theory foundation for the controller design and structure of active magnetic bearings.
出处 《机械工程与自动化》 2005年第3期18-21,共4页 Mechanical Engineering & Automation
基金 航空十五支撑项目(418010402)
关键词 LQR 电磁轴承 鲁棒稳定性 模型矩阵最大摄动界限 LQR the active magnetic bearings robust stability model matrix maximum perturbation bound
  • 相关文献

参考文献7

  • 1G Schweiter,H Bleuler,A Traxler.Active magnetic bearings basics,properties and application of active magnetic bearings[M].Switzerland Zurich,CH:vdf Hochschulverlag AG,1994:125-134.
  • 2FallSide F,H Seraji.Design of optimal systems by a fre-quency-domain technique[J].Proc Inst Elec Eng,1970,117:2017-2024.
  • 3Patel R V,M Toda,B Sridhar.Robustness of linear quadratic state feedback designs in the presence of system uncertainty[J].IEEE Trans Aut Control,1977,22:945-949.
  • 4Harvey C H,G Stein.Quadratic weights for asymptotic regulator properties[J].IEEE Trans Aut Control,1978,23:378-387.
  • 5Chen M J,C A Desoer.Necessary and sufficient condi-tion for robust stability of linear distributed feedback systems[J].Int J Control,1982,35(2):255-267.
  • 6蒋蔚孙 叶银忠.多变量控制系统分析与设计[M].北京:中国石化出版社,1997..
  • 7陈立群.[D].西安交通大学,2000:21-26.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部