期刊文献+

Numerical Modeling of the Performance of R22 and R290 in Adiabatic Capillary Tubes Considering Metastable Two-Phase Region——Flow Characteristics and Parametric Analysis of R22 and R290 被引量:2

Numerical Modeling of the Performance of R22 and R290 in Adiabatic Capillary Tubes Considering Metastable Two-Phase Region——Flow Characteristics and Parametric Analysis of R22 and R290
下载PDF
导出
摘要 Characteristics of R22 and its new alternative refrigerant R290 flowing through adiabatic capillary tubes are investigated based on the homogeneous model.Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity, Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 4000 lower than that of R22 due to the differences of physical properties between the two fluids. Further, a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40 ℃ to 50 ℃, the mass flow rate for R22 is increased by 1600, while the increasing rate for R290 is 1300. Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity. Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 40% lower than that of R22 due to the differences of physical properties between the two fluids. Further. a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40℃ to 50℃ C. the mass flow rate for R22 is increased by 16%. while the increasing rate for R290 is 13%.
出处 《Transactions of Tianjin University》 EI CAS 2005年第4期255-261,共7页 天津大学学报(英文版)
基金 Supported by the Fund of"985 Project"of Tianjin University (TD2001011).
关键词 数学模型 绝热管 参数分析 制冷剂 二相流程 refrigeration: adiabatic capillary tube: numerical simulation: HCFC replacement, twophase flow R290
  • 相关文献

参考文献1

  • 1Hwang Y H,Gado A,Radermacher R.Comparing R290 with R22 in heat pumps[].ASHRAE Journal.2003

同被引文献8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部