摘要
定积分不等式的证明是常见的一种题型。通过对典型例题的分析,利用换元法将被积函数转化为非负函数,或将定积分不等式视为数值不等式,再利用函数的单调性等,论述了含定积分的不等式证明的一般规律及求证方法。
Proving of definite integral inequality is a usual subject. The general theorems and ways of proving definite integral inequality are discussed here by the analysis of typical instances. To change times function into non-negative function, and use the basie qualities of definite integral. To regard definite integral inequality as numerical value inequality, and use the monotone of funr tion.
出处
《泰州职业技术学院学报》
2005年第4期47-49,共3页
Journal of Taizhou Polytechnic College
关键词
定积分
不等式
证明
definite integral
inequality
proving