期刊文献+

基于决策图贝叶斯优化进化算法的图K-划分算法

Graph K-Partitioning Algorithm based on DBOA
下载PDF
导出
摘要 图K-划分问题是一种组合优化问题,可以归结为NP难题。针对该问题本文提出了一种基于决策图贝叶斯优化算法(Bayesian Optimization Algorithm with Decision Graphs,简称DBOA)的图K-划分, 该算法利用新的编码和解码方法以及适当的适应度函数来求解图K-划分问题。仿真结果表明了该算法的可行性和有效性。 Graph K-Partitioning is key technology in stream of information Partitioning in Compiling Optimization,it is NP hard problem. A Graph K-Partitioning algorithm based on DBOA(Bayesian Optimization Algorithm with Decision Graphs) is put forward for this problem, which utilizes new coding and decoding method and appropriate fitness function solving Graph K-Partitioning problem. The simulation results suggest that the scheme is feasible and effective。
作者 田祖伟
出处 《现代计算机》 2005年第8期35-37,43,共4页 Modern Computer
关键词 BOA算法 DBOA算法 图K-划分 遗传算法 编译优化 组合优化问题 划分算法 决策图 进化算法 贝叶斯 BOA DBOA Graph K-Partitioning Genetic Algorithm Compiler Optimization
  • 相关文献

参考文献9

  • 1林亚平.概率分析进化算法及其研究进展[J].计算机研究与发展,2001,38(1):43-49. 被引量:27
  • 2Kernighan and Lin. An Cfficient Huristic Procedure for Partitioning Graphs. Bellsyst.Tech.J, 1970,3.
  • 3V. M. Lo. Task Assignment in Distributed Systems. University of Illinoics, USA, 1983,4.
  • 4Goldberg and Burstein. Heuristic Improvement Technique for Bisection of VLSI Networks. IEE Proc. Inc. Conf. on Computer Design,1983.
  • 5Holland J.H. Adaptation in Natural and Artificial Systems.Ann Arbor, MI.Univ. Michigan Press,1975.
  • 6Goldberg D E. Genetic Algorithms in Search, Optimization,and Machine Learning. Reading, MA: Addison-Wesley,1989.
  • 7Pelikan, M, Goldberg, D, E, &Sastry, K.(2001). Bayesian Optimization Algorithm Decision Graphs, and Occanm's Razor. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),519-526.
  • 8Pelikan, M, Goldberg, D. E., & Cantu-Paz, E.(1999).BOA: The Bayesian Optimization Algorithm. Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-99), 525-532.
  • 9Pelikan,M,Goldberg, D,E,&Sastry,K.(2001). Bayesian Optimization Algorithm Decision Graphs, and Occanm's Razor.Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-2001), 519-526.

二级参考文献31

  • 1[1]Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: Michigan Press, 1975
  • 2[2]Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989
  • 3[3]Harik G, Goldberg D E. Linkage learning. In: Belew R et al eds. Foundations of Genetic Algorithms 4. San Mateo, CA: Morgan Kaufmann, 1996
  • 4[4]Muehlenbein H. Evolutionary algorithms: Theory and applications. RWCP Theoretical Foundation GMD Laboratory, Tech Rep: GMD-AS-GA-94-02, 1994
  • 5[5]Harik G. Linkage Learning via probabilistic modeling in the ECGA. University of Illinois at Urbana-Champaign, IlliGAL Rep: 99010, 1999
  • 6[6]Goldberg D E. A meditation on the application of genetic algorithms. University of Illinois at Urbana-Champaign, IlliGAL Rep:98003, 1998
  • 7[7]Kargupta H. Revisiting GEMGA: Scalable evolutionary optimization through linkage learning. In: Proc of IEEE Int'l Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1998
  • 8[8]Harik G et al. The compact genetic algorithm. In: Proc of the 1998 IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1998. 523~528
  • 9[9]Pelikan M, Muehlenbein H. Marginal distributions in evolutionary algorithms. In: Proc of the Int'l Conf on Genetic Algorithm Mendel'98 Brno, 1998. 90~95
  • 10[10] Knjazew D, Goldberg D E. OMEGA-Ordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random. University of Illinois at Urbana-Champaign, IlliGAL Rep: 000004, 2000

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部