期刊文献+

Identities Involoving Some Numbers Related to Dyck Paths

一些与Dyck路有关的数的恒等式(英文)
下载PDF
导出
摘要 In the paper we derive many identities of forms ∑i=0^n(-1)^n-i(i^n)Um+k+i,k+i=f(n)and ∑ i=o^2n(-1)^i(i^2n)Um+k+i,k+i=9(n)by the Cauchy Residue Theorem and an operator method, where Un, k are numbers of Dyck paths counted under different conditions, and f(n), 9(n) and m are functions depending only on about n. 本文通过Cauchy留数定理和算子方法导出了一些形如(?)和(?)的差分恒等式,这里Un,k表示Dyck路在不同条件下的计数公式,f(n),g(n)与m(n)只和n有关的函数.
作者 孙怡东
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第3期441-446,共6页 数学研究与评论(英文版)
基金 the "973" Project on Mathematical Mechanizationthe National Science Foundation, the Ministry of Education, and the Ministry of Science and Technology of China.
关键词 IDENTITIES Dyck path Catalan numbers Motzkin numbers. 恒等式 Dyck路 Catalan数 Motzkin数
  • 相关文献

参考文献12

  • 1ANDREWS G E. The Theory of Partitions [M]. Encyclopedia of Mathematics and its Applications, Vol. 2. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
  • 2BENCHEKROUN S, MOSZKOWSKI P. A new bijection between ordered trees and legal bracketings [J].European J. Combin., 1996, 17: 605-611.
  • 3DEUTSCHE. A bijection on Dyck path and its consequences [J]. Discrete Math., 1998, 179: 253-256.
  • 4DEUTSCHE. Dyck path enumeration [J]. Discrete Math., 1999, 204: 167-202.
  • 5EGORYCHEV G P. Integral Representation and the Computation of Combinatorial Sums [M]. Translated from the Russian by H. H. McFadden. Translation edited by Lev J. Leifman. Translations of Mathematical Monographs, 59. American Mathematical Society, Providence, RI, 1984.
  • 6KIRKMAN T P. On the κ-Partitions of the r-Gon and r-Ace [M]. Phil. Trans. Royal Soc. London, 1857,147: 217-272.
  • 7KREWER AS G. Joint distributions of three descriptive parameters of bridges [C]. Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), 177-191, Lecture Notes in Math., 1234, Springer, Berlin, 1986.
  • 8KREWERAS G, MOSZKOWSKI P. A new enumerative property of the Narayana numbers [J]. J. Statist. Plann. Inference, 1986, 14: 63-67.
  • 9KREWERAS G, POUPARD Y. Subdivision des nombres de Narayanasuivant deux paramétres supplémentaires[J]. European J. Combin., 1986, 7: 141-149.
  • 10NARAYANA T V. A Partial Order and Its Applications to Probability [M]. Sankhya, 1959, 21: 91-98.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部