期刊文献+

A Note on Lattice Paths with Diagonal Steps in Three-Dimensional Space

三维空间中带对角步格路的一个注记(英文)
下载PDF
导出
摘要 Jr. Stocks[4] discussed lattice paths from (0, 0, 0) to (n, n, n) with diagonal steps under some restrictions. In this note, we give simpler formulas for the main results in [4], andextend them to a general case. Jr.Stocks讨论了从(0,0,0)到(n,n,n)的带对角步格路的计数问题.本文给出了[4]中主要结果的简单公式,并将其推广到了一般情形.
作者 卢青林
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第3期447-450,共4页 数学研究与评论(英文版)
基金 the Natural Science Foundation of Education Department of Jiangsu Province (02KJB52005).
关键词 lattice path diagonal step Andre's reflection principle. 格路 对角步 Andre反射原理
  • 相关文献

参考文献8

  • 1CHOI S. Counting lattice path in restricted planes [J]. Discrete Math., 2000, 212: 191-198.
  • 2MOSER L, ZAYACHKOWSKI W. Lattice paths with diagonal steps [J]. Scripta Math., 1963, 26: 223-229.
  • 3PERGOLA E. Two bijections for the area of Dyck paths [J]. Discrete Math., 2001, 241: 435-447.
  • 4STOCKS D R Jr. Lattice paths in E3 with diagonal steps [J]. Canad. Math. Bull., 1967, 10: 653-658.
  • 5WAGNER C G. The Carlitz lattice path polynomials [J]. Discrete Math., 2000, 222: 291-298.
  • 6COMTET L. Advanced Combinatorics [M]. Reidel, Dordrecht, 1974.
  • 7KAPARTHI S, RAO H R. Higher dimensional restricted lattice paths with diagonal steps [J]. Discrete Appl. Math., 1991, 31: 279-289.
  • 8ZEILBERGER D. Andre's reflection proof generalized to the many candidate ballot problem [J]. Discrete Math., 1983, 44: 325-326.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部