期刊文献+

铜、银和铂原子纳米团簇负热容现象的分子动力学模拟研究 被引量:7

Molecular dynamics simulations on the negative heat capacities of Cu, Ag and Pt nanoclusters
下载PDF
导出
摘要 本文采用微正则分子动力学方法模拟研究了铂、铜和银原子纳米团族从固态到液态的熔化过程,得到热容量随温度变化关系,结果表明这三种金属纳米团簇在熔化过程中均出现了负热容现象,并通过对团簇热能随温度的变化关系以及团簇原子数径向分布的分析,探讨了产生负热容现象的微观机制。 The melting processes of Cun, Agn and Ptn nanoclusters have been investigated by means of microeanonical molecular dynamics simulation technique. The curves of the potential energies and the heat capacities changing with temperature are obtained. It is found that all of these nanoclusters have negative heat capacity around melting temperatures.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2005年第3期434-438,共5页 Journal of Atomic and Molecular Physics
关键词 铜和银原子纳米团簇 负热容 分子动力学模拟 Cu,Ag and Pt nanoclusters negative heat capacity Molecular dynamics simulation
  • 相关文献

参考文献8

  • 1Bixon M, Jorther J. energetic and thermodynamics size effects in modecular clusters[J]. J.Chem.Phys., 1989,91:1631~1642.
  • 2labasite P, Wherren R L. Statistical thermodynamics of the cluster solid-liquid transition[J]. Phys.Rev.Lett., 1990,65:1567~1570.
  • 3Gross D H E. Statistical decay of very hot nuclei, the production of large clusters[J]. Rep.Prog.Phys., 1990,53:605~658.
  • 4Schmidt M, Kusche R, et al. Negative heat capacity for a cluster of 147 sodium atoms[J]. Phys. Rev.Lett., 2001,86:1191~1194.
  • 5Juan A. Reyes-nava, lgnacio. L Garzon, et al. Negative heat capacity of sodium clusters[J]. Phys. Rev., 2003,B67:165401.
  • 6肖绪洋,魏育新,王新强,甘飞,毋志民.金原子纳米团簇的负热容现象的分子动力学模拟研究[J].原子与分子物理学报,2004,21(1):27-30. 被引量:6
  • 7Johnson R A. Analytic nearest-neighbor model for fccmetals[J]. Phys.Rev., 1988,B37:3924~3931.
  • 8Johnson R A. Phase stability of fccalloys with the embedded-atom method[J]. Phys.Rev., 1990,B41:9717~9720.

二级参考文献12

  • 1[1]Gross D H E. Statistical decay of very hot nuclei, the production of large clusters[J]. Rep.Prog.Phys., 1990,53(5):605~658.
  • 2[2]Bixon M, Jortner J. Energetic and thermodynamics size effects in molecular clusters[J]. J.Chem.Phys., 1989,91(3):1 631~1 642.
  • 3[3]Labastie P, Whetten R L. Statistical thermodynamics of the cluster solid-liquid transition[J]. Phys.Rev.Lett., 1990,65(13):1 567~1 570.
  • 4[4]Schmidt M, Kusche R, et al. Negative heat capacity for a cluster of 147 sodium atoms[J]. Phys.Rev.Lett., 2001,86(7):1 191~1 194.
  • 5[5]Schmidt M, Kusche R, et al. Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms[J]. Phys.Rev.lett., 1997,79(1):99~102.
  • 6[6]Juan A Reyes-nava, Ignacio L Garzón, et al. Negative heat capacity of sodium clusters[J]. Phys.Rev., 2003,B67(16):165 401.
  • 7[7]Ercolessi F, Andreoni W, Tosatti E. Melting of small gold particles: mechanism and size effects[J]. Phys.Rev.Lett., 1991,66(7):911~914.
  • 8[8]Yu X, Duxbury P M. Kinetics of nonequilibrium shape change in gold clusters[J]. Phys.Rev., 1995,B52(3):2 102~2 106.
  • 9[9]Maiti A, Folicov L M. Phase diagram for sodium clusters[J]. Phys.Rev., 1992,A45(9):6 918~6 921.
  • 10[10]Lewis J, Jensen P, Barrat J L. Melting freezing and coalescence of gold nanoclusters[J]. Phys.Rev., 1997,B56(4):2 248~2 256.

共引文献5

同被引文献97

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部