期刊文献+

一般Hartmann势Klein-Gordon方程的束缚态 被引量:1

Bound states of Klein-Gordon equation for generalized Hartmann potentials
下载PDF
导出
摘要 用分离变量方法讨论了在一般Hartmann标量势和矢量势相等条件下Klein-Gordon方程的束缚态解。体系的性质与三个量子数及一般Hartmann势的势参数有关。给出了用广义连带勒让德多项式表示的归一化角向波函数和用合流超几何函数表示的归一化径向波函数,获得了精确的束缚态能谱方程。氢原子势、类氢原子势和Hartmann势是本文一般Hartmann势的三个特例。 By using the usual method of variable separation, bound states of Klein-Gordon equation with equal generalized Hartmann scalar and vector potentials are solved. Properties of the system relate to three quantum numbers and parameters of generalized Hartmann potential. The normalized angle wave function expressed in terms of the universal associated-Legendre polynomial and normalized radial wave function expressed in terms of the confluent hypergeometric function are presented. The exact energy spectrum equations are obtained. Hydrogen potential, hydrogen-like potential and Hartmann potential are three special eases for generalized Hartmann potential in the Letter.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2005年第3期443-448,共6页 Journal of Atomic and Molecular Physics
基金 江苏省教育厅自然科学基金(02KJB140007)
关键词 一般Hartmann势 Klein—Gordon方程 标量势和矢量势 束缚态 Generalized Hartmann potential Klein-Gordon equation Scalar and vector potentials Bound states
  • 相关文献

参考文献10

二级参考文献81

  • 1Talukdar B, Yunus A and Amin M R 1989 Phys .Lett. A 141 326.
  • 2Hu SZ and Su R K 1991 Acta Phys. Sin.40 1201 (in Chinese).
  • 3Hou C F, Li Y and Zhou Z X 1999 Acta Phys. Sin. 48 1999 (in Chinese).
  • 4Hou C F and Zhou Z X 1999 Acta Phys. Sin. (Overseas Edition) 8.561.
  • 5Guo J Y 2002 Acta Phys. Sin. 51 1453 (in Chinese).
  • 6Qiang W C 2002 Chin. Phys. 11 757.
  • 7Chen G 2001 Acta Phys. Sin. 50 1651(in Chineee).
  • 8Gradner G S et al 1974 Commun. Pure and Appl.Math. 2793.
  • 9Lamb G L Jr 1986 Elements of Solution Theory(New York: John Wiley and Sons).
  • 10Wang Z X and Guo D R 2000 Introduction to Special Function (Beijing:Peking University Press)(in Chinese)

共引文献62

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部