期刊文献+

纳米单原子链的热膨胀性质 被引量:2

Thermal expansion of a monatomic nanochain
下载PDF
导出
摘要 根据戴逊方程,推导了纳米单原子链的位移-位移Green函数,并得到了声子占有数表象中原子位移与哈密顿的表达式。在这些结果的基础上,应用微扰理论,推导了热膨胀和热膨胀系数的计算公式,并进行了数值计算。研究结果表明,在有限温度下,纳米单原子链中靠近两端的原子间距的热膨胀大于内部的原子间距的热膨胀,而原子链中靠近两端的原子间距的热膨胀系数小于内部的原子间距热膨胀系数。原子链的长度越短,则所有原子间距热膨胀的平均值越大,而原子链的热膨胀系数越小。 Based on Dyson's equation, the displacement-displacement Green's function of a monatomic nanochain is derived, the formulas of atomic displacement and Hamiltonian in phonon occupation number representation are obtained. On the basis of these results, the formulas of thermal expansion and thermal expansion coefficient are derived with the perturbation theory, and the numerical calculations are carried out. The results show that at finite temperature the thermal expansions for interatomic spacings near the ends of monatomic chain are larger than those in the middle of the monatomic chain, and the thermal expansion coefficients near the ends of monatomic chain are smaller than those in the middle of the monatomic chain. The shorter monatomic chain has a larger mean value of thermal expansions for all interatomic spacings and a smaller thermal expansion coefficient.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2005年第3期505-510,共6页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金资助项目(50375154)
关键词 纳米单原子链 热膨胀 振动 微扰理论 Monatomic nanochain Thermal expansion Vibration Perturbation theory
  • 相关文献

参考文献7

  • 1Maluf N. An Introduction to Microelectromechanical Systems Engineering[M]. Boston: Artech House, Inc., 2000.p.1~13;p.161~198.
  • 2Bauer E, Wu T Y. Thermal expansion of a linear chain[J]. Phys. Rev., 1956, 104:914~915.
  • 3Mohazzabi P, Behroozi F. Thermal expansion of solids: a simple classical model[J]. Eur. J. Phys., 1997, 18:237~240.
  • 4Wei S Q, Chang L,Chou M Y. Ab initio calculation of thermodynamic properties of silicon[J]. Phys. Rev., 1994, B50:14587~14590.
  • 5Lazzeri M, Gironcoil S. Ab initio study of Be (0001) surface thermal expansion[J]. Phys. Rev., 1998, B81:2096~2099.
  • 6Bottger H. Principles of the Theory of Lattice Dynamics[M]. Weinheim:Physik-Verlag, 1983. p.85~88.
  • 7Madelung O. Introduction to Solid-State Theory [M]. Berlin: Springer-Verlag, 1978. p.136~139; p.157~161.

同被引文献9

  • 1Semwal B S,Sharma P K.Thermal conductivity of an anharmonic cryatal[J].Phys.Rev.,1966,B5:3909
  • 2Li D,Wu Y Y,Kim Philip,et al.Thermal conductivity of individual silicon nanowires[J].J.Appl.Phys.,2003,83:2934
  • 3Heino P.Thermal conductivity and temperature in solid argon by nonequilibrium molecular dynamics simulations[J].Phys.Rev.,2005,B71:144302
  • 4Yao Z H,Wang J S,Li B W,et al.Thermal conduction of carbon nanotubes using molecular dynamics[J].Phys.Rev,.2005,B71:085417
  • 5Chen G,Borca-Tasciuc D,Yang R G.Nanoscale Heat Transfer In Encyclopedia of Nanoscience and Nanotechnology[M].Nalwa H S,ed.New York:American Scientific Publishers,2004.1
  • 6Bottger H.Principles of the Theory of Lattice Dynamies[M].Weinheim:Physik-Verlag,1983.85
  • 7Hardy R J.Energy-flux operator for a lattice[J].Phys.Rev.,1963,132:168
  • 8Sarmman S.in Molecular Dynamics From Classical to Quantum Methods[M].Balbuena P B,ed.Amsterdam:Elsevier,1999.336
  • 9黄建平,王麓雅.简立方单原子纳米晶体颗粒的二次多普勒移动的理论研究[J].原子能科学技术,2002,36(2):151-153. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部