期刊文献+

机器人定位中稳健的自适应粒子滤波算法 被引量:3

Robust adaptive particle filter in robot localization
原文传递
导出
摘要 为了提高粒子滤波算法在机器人定位中的性能,在基本粒子滤波算法的基础上,引入概率回退的方法对机器人的初始状态进行估计,采用窗口滤波更新粒子集合,根据对机器人位置估计的情况动态更新粒子集合的大小,得到一种改进的粒子滤波算法——稳健的自适应粒子滤波算法。仿真结果表明:该算法充分利用了对机器人位置估计的有效信息,在显著提高算法稳健性的同时,降低了运算复杂度,较好地解决了机器人定位这一非线性非Gauss状态在线估计问题。 The performance of particle filters in robot localization is improved through the use of a robust adaptive particle filter. The novel algorithm introduces probability retrieval to initialize particle sets, uses multi-set resampling to update particle sets, and refreshes particle set sizes according to the estimation state. Extensive simulations show that the proposed algorithm is much more effective than simple particle filters for the improving robustness and the reducing computational complexity, and successfully solved the nonlinear, non-Gaussian state estimation problem of robot localization.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第7期920-923,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60402030)
关键词 机器人定位 粒子滤波 K—L(Kullback Leibler)距离 概率回退 robot localization particle filters K-L(Kullback Leibler) distance probability retrieval
  • 相关文献

参考文献9

  • 1Doucet A,Freitas N,Gordon N.Sequential Monte Carlo Methods in Practice [M].New York:Springer,2001.
  • 2Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering [J].Stat Comput,2000,3:197-208.
  • 3Thrun S,Fox D,Burgard W,et al.Robust Monte Carlo localization for mobile robots [J].Artificial Intelligence,2000,128(12):99-14.
  • 4Fox D.KLD-sampling:Adaptive particle filters [J].International Journal of Robotics Research,2003,22(12):985-1003.
  • 5Kwok C,Fox D,Meila M.Adaptive real-time particle filters for robot localization [J].Proceedings - IEEE International Conference on Robotics and Automation,2003,2:2836-2841.
  • 6Rekleitis Ioannis M.Cooperative Localization and Multi-Robot Exploration [D].Montreal,Quebec,Canada:School of Computer Science,McGill University,2003.
  • 7Gutmann J,Weigel T,Nebel B.A fast,accurate,and robust method for self-localization in polygonal environments Using Laser-Range-Finders [J].Advanced Robotics Journal,2001,14(8):651-668.
  • 8Moore A.Efficient Memory-based Learning for Robot Control [D].Cambridge:University of Cambridge,1990.
  • 9Cover T,Thomas J.Elements of Information Theory [M].New York:Wiley,1991.

同被引文献21

  • 1桂仲成,陈强,孙振国,张文增,刘康.水轮机叶片修复机器人的移动平台[J].机械工程学报,2006,42(11):156-161. 被引量:5
  • 2许士芳,谢立,刘济林.基于MCMC粒子滤波的机器人定位[J].浙江大学学报(工学版),2007,41(7):1083-1087. 被引量:12
  • 3Cohen C, Koss F. A comprehensive study of three object triangulation [C]// Proc of the 1993 SPIE Conf on Mobile Robots. Boston, MA. 1992: 95- 106.
  • 4Salas J, Gordillo J L. Robot location using vision to recognize artificial landmarks [C]// Proc SPIE-Int Society for Optical Eng. 1994:159 - 169.
  • 5Engelson S, McDermott D. Error correction in mobile robot map learning [C]// Proc 1992 IEEE Int Conf Robotics and Automation. France. 1992: 2555- 2560.
  • 6Wei P, Xu C, Zhao F. A method to locate the position of mobile robot using extended Kalman filter [C]// Int Conf on Comput Intelligence and Security, CIS. 2005: 815- 820.
  • 7Kwok,Ngai Ming.Mobile robot localization and mapping using a Gaussian sum filter[].International Journal of ControlAutomation and Systems.2007
  • 8Ashokaraj Immanuel,Tsourdos Antonios,Silson Peter,et al.Sensor based robot localisation and navigation:using interval analysis and unscented Kalman filter[].IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).2004
  • 9Woo Jeong,Kim Young Joong,Lee Jeong On,et al.Localization of mobile robot using particle filter[].SICE-ICASE International Joint Conference.2006
  • 10Kong A,Liu J S,Wong W H.Sequential imputations and bayesian missing data problems[].Journal of the American Statistical Association.1994

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部