期刊文献+

二阶离散边值问题的一个存在性定理(英文) 被引量:1

AN EXISTENCE THEOREM FOR SECOND ORDER DISCRETE BOUNDARY VALUE PROBLEMS
下载PDF
导出
摘要 作者利用监界点理论中的山路引理研究了一类非线性二阶差分方程边值问题解的存在性,获得了该边值问题有解的一个充分条件. This article is concerned with the existence of solutions of boundary value problem for a class of nonlinear second-order difference equations. The author apply the Mountain Pass Lemma in the critical point theory and give a new result for the existence of solutions for this boundary value problem.
作者 蔡晓春
出处 《经济数学》 2005年第2期208-214,共7页 Journal of Quantitative Economics
基金 Thisprojectissupportedbyspecializedresearchfundforthedoctoralprogramofhighereducation.(No.2002053014)
关键词 非线性差分方程 山路引理 边值条件 离散边值问题 二阶差分方程 存在性定理 解的存在性 非线性 界点 Nonlinear difference equations, The Mountain Pass Lemma, Boundary value conditions.
  • 相关文献

参考文献21

  • 1Agawal, R. P. , DifJerence Equations and Applications: Theory, Methods and Applications, Marcel Dekker, In C. , New York, 2000.
  • 2Agarwal, R. P. , and Stanek, S. , Existence of positive solutions to singular semi-positone boundary value problems, Nonlinear Analysis, 51( 2002), 821 - 842.
  • 3Ahlbrandt C. D. and Peterson, A. C. Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, 1990.
  • 4Agarwal, R, P. ,O'Regan D. and Wang, P. J, Y. , Positive Solutions of Differential, Difference and Integral Equations, Kluwer, Dordrecht, 1999.
  • 5Agarwal, R. P. , Perera K. and O'Regan, D. , Multiple positive solutions of singular and nonsingular discrete problems, Nonlinear Analysis. 58(2004),69-73.
  • 6Atici, F. M. and Guseinov, G. S. , Positive periodic solutions for nonlinear difference equations with periodic coefficients, J. Math. Anal. Appl. , 232(1999),166-182.
  • 7Cabada, A. and Espinar, V. S. , Existence and comparison results for difference ф-Laplacian boundary value problems with lower and upper solutions in reverse order, J. Math. Anal. 267(2002),501-521.
  • 8Castro, A. and Shivaji, R., Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Cann. PED. , 14:8-9(1989),1091-1100.
  • 9Cecchi, M. Marini, M. and Villari, G. , On the monotomicity property for a certain class of second order differential equations, J. Diff. Equat., 82:1(1998), 15-22.
  • 10Deimling, K. , Nonlinear Functional Analysis, Springer, Berlin, 1985.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部