摘要
It is shown that the coupling system between fractal membranes and a Gaussian beam passing through a static magnetic field has strong selection capability for the stochastic relic gravitational wave (GW) background. The relic GW components propagating along the positive direction of the symmetrical axis of the Gaussian beam might generate an optimal electromagnetic perturbation, while the perturbation produced by the relic GW components propagating along the negative and perpendicular directions to the symmetrical axis will be much less than the former, and the influence of the random fluctuation of the relic GWs to such effect can be neglected. The high-frequency relic GWs satisfying the parameters requirement (h - 10^-31 or larger), frequency resonance and “direction coupling”, in principle, would be selectable and measurable in seconds.
It is shown that the coupling system between fractal membranes and a Gaussian beam passing through a static magnetic field has strong selection capability for the stochastic relic gravitational wave (GW) background. The relic GW components propagating along the positive direction of the symmetrical axis of the Gaussian beam might generate an optimal electromagnetic perturbation, while the perturbation produced by the relic GW components propagating along the negative and perpendicular directions to the symmetrical axis will be much less than the former, and the influence of the random fluctuation of the relic GWs to such effect can be neglected. The high-frequency relic GWs satisfying the parameters requirement (h - 10^-31 or larger), frequency resonance and “direction coupling”, in principle, would be selectable and measurable in seconds.
基金
Supported by the National Basic Research Programme of China under Grant No 2003CB716300, the National Natural Science Foundation of China under Grant No 10175096, and the Natural Science Foundation of Chongqing under Grant No 8562.