摘要
Hydrogen-free silicon nitride (SiNx) films were deposited at room temperature by microwave electron cyclotron resonance (MW-ECR) plasma enhanced unbalance magnetron sputtering system. Both Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy are used to study the bonding type and the change of bonding structures of the silicon nitride films. The results indicate that the chemical structure and composition of SiNx films deposited by this technique depend strongly on the N2 flow rates, the stoichiometric SiNx film, which has the highest hardness of 22.9 GPa, could be obtained at lower N2 flow rate of 4 sccm.
Hydrogen-free silicon nitride (SiNx) films were deposited at room temperature by microwave electron cyclotron resonance (MW-ECR) plasma enhanced unbalance magnetron sputtering system. Both Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy are used to study the bonding type and the change of bonding structures of the silicon nitride films. The results indicate that the chemical structure and composition of SiNx films deposited by this technique depend strongly on the N2 flow rates, the stoichiometric SiNx film, which has the highest hardness of 22.9 GPa, could be obtained at lower N2 flow rate of 4 sccm.
基金
Supported by the National Natural Science Foundation of China under Grant No 50390060.