期刊文献+

粗集理论在目标识别信息处理中的应用 被引量:2

Application of Rough Set Theory in Target Identification Information Processing
下载PDF
导出
摘要 为提取传感器获得的较粗糙的原始信息,运用粗集理论进行目标识别信息的处理,提出了一种采用关系表存储原始信息,通过简化关系表删去冗余信息,从而达到提取有用信息的处理方法。根据此方法,实例中通过对生成的规则进行优选,得到了简单准确的目标识别规则。此理论在信息处理中的应用,较好地满足了目标识别中原始信息处理的需求。 To mine the original crude information caught by sensors, the rough set theory is used to process the information of target identification, and a mining algorithm is established, which stores the original information with table, deletes redundant information by simplifying the table, and finally mines the useful information. Based on this algorithm, the made rules are chosen, and the simple and accurate rule of target identification is gotten by this example. The application of RS theory in information processing meets the need of original information processing in target identification.
出处 《情报指挥控制系统与仿真技术》 2005年第4期19-23,共5页 Information Command Control System and Simulation Technology
关键词 粗集 信息处理 目标识别 rough set information processing track identification
  • 相关文献

参考文献7

二级参考文献12

  • 1[1]Kim D, Bang SY. A Handwritten Numeral Character Classification Using Tolerant Rough Set[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(9): 923 -937.
  • 2[2]Quafaou M. - RST: a generalization of rough set theory[J]. Information Sciences, 2000(124): 301 - 316.
  • 3[3]Tsumoto S. Knowledge discovery in clinical database and evaluation of discovered knowledge in outpatient clinic[ J]. Information Science, 2000(124): 125 - 137.
  • 4[4]Ziarko W. Variable Precision Rough Set Model[ J]. Journal of computer and system sciences, 1993 (46): 39 - 59.
  • 5[5]Nelson DE, Starzyk JA. High Range Resolution Radar Signal Classification: A Partitioned Rough Set Approach[A]. Procedings of the 33rd Southeastern Symposium on System Theory[C]. Athens, OH,Mar 2001.
  • 6[6]Shen DG, Horace HS. Ip. Discriminative wavelet shape descriptiors for recognition of 2- D patterns[J]. Pattern Recognition, 1999(32): 151 - 165.
  • 7Mrozek, A. , and Plonka, L. Pough sets in industrial applications[J]. In Rough Sets in Knowledge Discovery, Vol. 2.L. Poikowski and A. Skowron, Eds. Physica Verlag, 1998.
  • 8Elder IV J F, Pregibon D. A statistical perspertive on knowledge desvovery in databases. In : Fayyad U, PiatetskyShapiro G.SmythP eds. Advances in Knowledge Discovery and Data Mining[ M]. U. S. A:AAAl Press, 1996.
  • 9曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 10韩祯祥,张琦,文福拴.粗糙集理论及其应用综述[J].控制理论与应用,1999,16(2):153-157. 被引量:156

共引文献26

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部