摘要
基于Karman板理论和线粘弹性Boltzmann叠加原理,建立了粘弹性对称铺设层合板的非线性积分—偏微分动力学方程。针对材料具积分型本构关系以及松弛模量为Prony级数的形式,应用Galerkin技术、Newmark方法和Newton-Cotes方法,给出了求解粘弹性层合结构非线性动力学问题的一种有效的数值算法。具体地求解了若干算例,且与相关文献进行了比较。
Based on von Karman thin plate theory and Boltzmann principle for linear viscoelastic materials, the nonlinear integral-partial differential dynamic equations for viscoelastic symmetrically laminated plates are derived. By using the Galerkin procedure, Newmark scheme and Newton-Cotes method, an effective numerical method is developed to perform the nonlinear dynamic analysis of viscoelastic laminated structures with hereditary constitutive relationship and relax modulus expressed in Prony series. Some numerical examples are given and the results are compared with available data.
出处
《工程力学》
EI
CSCD
北大核心
2005年第4期24-30,共7页
Engineering Mechanics
基金
国家自然科学基金资助项目(10272024)
关键词
粘弹性
对称层合板
非线性
动力响应
数值方法
viscoelasticity
symmetrically laminated plates
nonlinearity
dynamic response
numerical method