期刊文献+

高脂饲养及罗格列酮干预对α细胞功能的影响 被引量:16

The effect of high fat feeding and rosiglitazone intervention on pancreatic α cell in rats
原文传递
导出
摘要 目的观察高脂饲养对SD大鼠α细胞形态和功能的影响及罗格列酮干预的作用。方法8周龄雄性SD大鼠36只随机分为3组:正常饲养组(CC,n=12)、高脂饲养组(CF,n=12)、高脂饲养+罗格列酮组(Ro,n=12,罗格列酮3mg·kg-1·d-1)。饲养28周时进行静脉糖耐量试验,于给糖后0、3、5、10min各留取动脉血待测胰岛素(Ins)及胰升糖素(Gg)水平,并同时测定即时血糖。采用组织对3H-2-脱氧葡萄糖(3H-2-DG)的吸收率评估胰岛素敏感性。免疫组织化学染色检测胰腺α细胞和β细胞的变化。结果CF组Gg在0、3、5、10min时水平[(119·3±12·4、82·3±6·4、72·2±5·8、68·2±9·1)ng/L]高于CC组[(96·8±9·1、67·6±5·9、57·9±5·3、55·3±6·9)ng/L,P<0·05];Ro组[(78·4±6·0、59·4±4·0、49·9±6·2、40·9±6·0)ng/L]显著低于CF组和CC组,P<0·01。各组Ins水平无统计学差异。α细胞积分下吸光度值,CF组及Ro组均高于CC组(1661±130及1532±132比1188±104,P<0·01及P<0·05);β细胞积分下吸光度值各组未见统计学差异。CF组的肌肉、肝脏和脂肪组织3H-2-DG吸收率明显低于CC组及Ro组(P值均<0·05)。结论高脂饲养SD大鼠引起胰岛素抵抗,同时伴有α细胞增生和Gg异常高分泌。罗格列酮可部分逆转这种变化。 Objective To observe the effect of high-fat diet and rosightazone mtervention on the function of pancreatic α cell of SD rats. Methods 36 normal male SD rats, 8-week old, were randomly divided into 3 groups i. e. , a normal chow group (CC, n=12), an isoealorie high-fat diet group (CF, n=12) , and a rosiglitazone-treated group (Ro, n=12, rosiglitazone 3mg·kg^-1·d^-1 and isoealorie high fat diat) . Triglyceride (TG) was measured every 4 weeks after feeding for 6 weeks. After 28 weeks, the secretion of insulin and glueagon (Gg) was assessed with intravenous glucose tolerance test (IVGTT) at 0, 3, 5, and 10 minutes. ^3H-2-deoxylglueose (3H-2-DG) uptake by tissues was measured to evaluate the insulin sensitivity. Results The ratio of intra-abdominal fat mass and body weight was higher in the rats of CF and Ro group than that in the rats of CC group. At the first 10 min of IVGTT, the Gg level was higher in the CF group than that in CC group [(119.3±12.4, 82.3±6.4, 72.2±5.8, 68.2±9.1) ng/L vs (96.8±9.1, 67.6±5.9, 57.9±5.3, 55.3±6.9) ng/L, P 〈0.05] and Ro group [(78.4 ±6.0, 59.4±4. 0, 49.9±6. 2, 40. 9±6.0 ) ng/L, P〈0.01] , the level was even lower in the latter group than in CC group ( P〈0.01 ). There was no difference of insulin level among the 3 groups. By using quantitative image analysis, the integrated A ( area × A ) of α cells was significantly higher in the CF group and Ro group as compared with that in the CC group ( 1661±130 and 1532±132 vs 1188±104, P〈0.05 ). In contrast, there was no difference among the 3 groups in the integrated A of β cells. Conclusions High-fat feeding induces insulin resistance in rats, which is associated with pancreatic α cell proliferation and abnormal Gg secretion.
出处 《中华内科杂志》 CAS CSCD 北大核心 2005年第8期601-605,共5页 Chinese Journal of Internal Medicine
  • 相关文献

参考文献13

  • 1Nolte LA, Hansen PA, Chen MM, et al. Short-term exposure to tumor necrosis factor-alpha does not affect insulin-stimulated glucose uptake in skeletal muscle. Diabetes, 1998, 47: 721-726.
  • 2Basu A, Alzaid A, Dinneen S, et al. Effects of a change in the pattern of insulin delivery on carbohydrate tolerance in diabetic and nondiabetic humans in the presence of differing degrees of insulin resistance. J Clin Invest, 1996, 97 : 2351-2361.
  • 3Mitrakou A, Kelley D, Veneman T, et al. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes, 1990, 39: 1381-1390.
  • 4Butler PC, Rizza RA. Contribution to postprandial hyperglycemia and effect on initial splanchnic glucose clearance of hepatic glucose cycling in glucose-intolerant or NIDDM patients. Diabetes, 1991,40: 73-81.
  • 5Thorburn A, Litchfield A, Fabris S, et al. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects. Diabetes Res Clin Pract, 1995, 28:127-135.
  • 6Shah P, Vella A, Basu R, et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab, 2000, 85:4035-4039.
  • 7Laube H, Fussganger RD, Pfeiffer EF. Paradoxical glucagon release in obese hyperglycemic mice. Horm Metab Res, 1974, 6:426.
  • 8Gremlich S, Bonny C, Waeber G, et al. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase,insulin, and somatostatin levels. J Biol Chem, 1997, 272: 30261-30269.
  • 9Larsson H, Ahren B. Islet dysfunction in insulin resistance involves impaired insulin secretion and increased glucagon secretion in postmenopausal women with impaired glucose tolerance. Diabetes Care, 2000, 23: 650-657.
  • 10Shah P, Basu A, Basu R, et al. Impact of lack of suppression of glucagon on glucose tolerance in humans. Am J Physiol, 1999, 277(2Pt 1) :E283-E290.

二级参考文献28

  • 1杨文英,邢小燕,林红,马晓华,胡英华,李光伟,潘孝仁.高甘油三酯血症是非胰岛素依赖型糖尿病发病的危险因素──432例非糖尿病人群六年前瞻性观察[J].中华内科杂志,1995,34(9):583-586. 被引量:143
  • 2Storlien LH, James DE, Burleigh KM, et al. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol, 1986, 251(5 Pt 1):E576-E583.
  • 3McGarry JD. Banting lecture 2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes,2002,51:7-18.
  • 4Lee Y,Hirose H, Ohneda M,et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A, 1994,91: 10878-10882.
  • 5Randle PJ,Garland PB,Hales CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1963,1: 785-789.
  • 6Boden G, Chen X, Ruiz J, et al. Mechanism of fatty acid-induced inhibition of glucose uptake. J Clin Invest, 1994, 93: 2438-2446.
  • 7Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and huperinsulinemia. J Clin Endocrinol Metab, 2001,86:1930-1935.
  • 8Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponetin/ACRP30. Nat Med, 2002, 8:731-737.
  • 9Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, 2001, 7:941-946.
  • 10Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest, 2001,108:1875-1881.

共引文献110

同被引文献191

引证文献16

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部