期刊文献+

基于模拟退火遗传算法的RBF网络的优化 被引量:3

Parameter Optimization of RBF Neural Network Based on Genetic and Simulated Annealing Algorithm
下载PDF
导出
摘要 提出了引入模拟退火的遗传算法对径向基函数(RBF)网络中心参数进行优化的算法,算法中选择实数编码,采用引入模拟退火过程的多点交叉和区域内随机波动的变异方法。用此算法作了两个仿真实验:一是对典型的混沌时间序列的预测,二是对被干扰了的图象进行去干扰。结果表明:这种基于模拟退火遗传算法对RBF网络参数的优化是行之有效的。 In the paper a new genetic optimization algorithm, which is based on simulated annealing algorithm, is put forward and parametera of RBF network are optimized. In this new genetic optimization algorithm real number coding and multi-location crossover are used ,and the mutation range is given by random .To prove the right of the new algo- rithm, two experiments are clone in MATLAB. One experiment is the forecast of chaos sequence and the other is the re- moving of noise data in digital image .The results of the two experiments proves: the new genetic algorithm is fight and the error of the network is less than the error in traditionally designed RBF network.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第7期174-177,共4页 Microelectronics & Computer
基金 江苏省教育厅自然科学基金(01KJB520007)
关键词 径向基函数网络 遗传算法 参数优化 Radial basis function neural network, Genetic algorithm, Parameter optimization
  • 相关文献

参考文献6

  • 1Moody J, Darken C. Fast Learning in Networks of Locallytuned Processing Units [J]. Neural Computation,1989 (1):281-294.
  • 2T Watanabe, et al. Transformation of Spectral Envelope for Voice Conversion Based on Radial Basis function Networks[A]. Proc. ICSLP[C]. Denver ,USA, Sept. 2002: 285-288.
  • 3Chen S, Cowan C F N, Grant P M.Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks[J]. IEEE Transactions on Neural Networks, 1991 ,(3): 02-308.
  • 4宫新保,周希朗.基于免疫聚类和遗传算法的RBF网络设计方法[J].应用科学学报,2004,22(1):81-84. 被引量:9
  • 5李红利,张晓彤,兰立柱,孙兆林.基于遗传算法的RBF神经网络的优化设计方法[J].计算机仿真,2003,20(11):67-69. 被引量:55
  • 6Geman S, Genan D. Stochastic Relaxation, Gibbs Distributions, the Bayesian Restoration of Images[J]. IEEE Trans.Pattern Analysis and Machine Intelligence, 1984, 6 (6):721-741.

二级参考文献9

  • 1[1]Mulgrew Bernard. Applying radial basis functions[J]. IEEE Signal Processing Magazine, 1996, 13(2): 50-65.
  • 2[2]De Castro L N, Von Zuben F J. An immunological approach to initialize centers of radial basis function neural networks[C]. Proceedings of V Brazilian Conference on Neural Networks, 2001. 79-84.
  • 3[3]Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks[J]. IEEE Trans on Neural Networks, 1994, 5(1): 39-53.
  • 4[4]Moody J., Darken C. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, (1): 281-294.
  • 5[5]Karayiannis N B, Mi G W. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques[J]. IEEE Trans on Neural Networks, 1997, 8(6): 1492-1506.
  • 6[6]Sergio Verdu. Multiuser Detection [M]. Cambridge, UK: Cambridge University Press, 1998.
  • 7岳喜才,管桦,叶大田.说话人识别使用遗传RBF网络[J].应用声学,2000,19(2):35-38. 被引量:6
  • 8刘妹琴,陈际达,蔡自兴.基于MDL的RBF神经网络结构和参数的学习[J].小型微型计算机系统,2000,21(4):379-382. 被引量:11
  • 9魏海坤,徐嗣鑫,宋文忠.RBF网学习的进化优选算法[J].控制理论与应用,2000,17(4):604-608. 被引量:25

共引文献61

同被引文献17

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部