期刊文献+

用多消失矩最优小波包基改进虹膜识别 被引量:1

Improving Iris Recognition by Multi-vanishing Moments Joint Best Basis Selection
下载PDF
导出
摘要 采用层叠算法求出尺度函数和小波函数的离散采样序列的逼进,将不具有基函数解析表达式的母小波用于虹膜特征提取,并利于实现连续小波包变换.针对虹膜光学识别应用背景,提出采用基于连续小波包变换的多消失矩联合最优小波包基来改进特征图像相关识别的最优基,并用统计识别方法进行后处理以增强算法适应性,同时提出通过体全息相关系统来实现,以发挥光学高并行性的优势,模拟结果表明可获得比已有方法更高的识别率. In digital computation, it is the discrete sampling sequences of continuous wavelet functions that are used. Using the cascade algorithm, the discrete approximating sequences of scaling and wavelet functions are computed for introducing the mother wavelets without analytical forms into iris feature extraction. By the definition of wavelet packets, the discrete approximating sequences of wavelet packet functions can also be computed to fulfill continuous transform. Using continuous wavelet packet transform based on these sequences, the multi-vanishing moments joint best wavelet packet bases are chosen for eigen-images generation in the eigen-images based correlation recognition. This recognition is implemented by a volume holographic correlation system to take good use of high parallelism of optics. The modified post-processing method using statistic feature can make the algorithm more robust to the errors introduced in optical system. In simulation, with the high precision of digital computation, the identification rate is 90.91% and is higher than the identification rate, 85. 2%, which is obtained by the dual multi-channel statistic recognition method using the same mother wavelet, Db4.
出处 《光子学报》 EI CAS CSCD 北大核心 2005年第8期1224-1228,共5页 Acta Photonica Sinica
基金 国家自然科学基金(60277012)
关键词 虹膜识别 层叠算法 连续小波变换 小波包变换 最优基优选 Iris recognition Cascade algorithm Continuous wavelet transform Wavelet packet transform Joint best basis selection
  • 相关文献

参考文献13

  • 1杨静,王岩飞,刘波.一种新的非抽取提升结构小波变换图象融合算法[J].光子学报,2004,33(6):728-731. 被引量:17
  • 2Daugman J G. Recognition people by their iris patterns.Information Security Technical Report, 1998,3 ( 1 ) : 33-39.
  • 3Ma L, Wang Y, Tan T. Iris recognition based on multichannel gabor filtering. Proceedings of ACCV'2002, 2002,I: 279-283.
  • 4Boles W W,Boashah B. A human identification technique using images of the iris and wavelet transform. IEEE Trans on Signal Processing, 1998,46(4): 1185-1188.
  • 5Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Patt Anal And Mach Intell,1989,11(7) : 674-693.
  • 6Coifman R, Meyer Y, Wickerhauser M V. Progress in Wavelet Analysis and Applications, Editions Frontieres,France, 1993. 1-12.
  • 7Daubechies I. Ten Lectures on Wavelets, Philadelphia,PA, SIAM, 1992. 202-213.
  • 8那彦,史林,杨万海.小波包变换与遥感图像融合[J].光子学报,2004,33(6):736-738. 被引量:19
  • 9Ding Li, Yan Yingbai, Xue Qingzeng, et al. Wavelet packet compression for volume holographic image recognition. Optics Communications, 2003, 216: 105-113.
  • 10Goertzen B J, Mitkas P A. Volume holographic storage for large relational databases. Optical Engineering,1996,35(7) : 1847-1853.

二级参考文献14

  • 1Sheng Shui ZHANG,Qing Guo LIU,Lei Ling YANG,Gregory C FARRINGTON.SYNTHESIS OF OLIGO(OXYETHYLENE) MACROMONOMER CARRYING SULFONATE[J].Chinese Chemical Letters,1992,3(10):843-844. 被引量:4
  • 2[1]Sweldens W. The Lifting Scheme:A construction of second generation wavelets [Technical Report],USA:University of South Carolina,1995
  • 3[2]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation.IEEE Trans on PAMI,1989,11(7):674~693
  • 4[3]Calderbank R,Daubechies I,Sweldens W,et al.Wavelet transforms that map integers to integer [Technical Report],USA,Princeton University,1996
  • 5[4]Stoffel A.Remarks on the unsubsampled wavelet transform and lifting scheme,Elsevier Science,1998
  • 6[5]Cohen A,Daubechies I,Feauveau J C.Biorthogonal bases of compactly supported wavelets.Commun Pure Appl Math,1995,45:485~500
  • 7[6]Li H,Manijunath B S.Multisensor image fusion using the wavelet transform.Graphical models and Image Processing,1995,57(3): 235~245
  • 8[1]Yocky D A.Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data.Photogrammetric Engineering and Remote Sensing,1996,62(9):1067~1074
  • 9[2]Gross H N,Schott J R.Application of spetral mixture analysis and image fusion techniques for image sharpening.Remote Sensing of the Environment,1998,63:85~94
  • 10[3]Zhukov B,Berger M,Lanzl F,et al.A new technique for merging multispectral and panchromatic image revealing sub-pixel spetral variation.International Conference on Geoscience and Remote Sensing Symposium,1995,3:2154~2156

共引文献42

同被引文献9

  • 1才德,严瑛白,金国藩.光学小波包变换及其滤波器的研究[J].光子学报,2006,35(7):1076-1079. 被引量:7
  • 2宋凭,刘波,曹剑中,张仲敏,李荣.提升小波变换与分形相结合的图像压缩[J].光子学报,2006,35(11):1784-1787. 被引量:8
  • 3PATTON R J, CHEN J. Observer-based fault detection and isolation:robustness and applications[J]. Contr Eng Practice, 1997,5(5) :671-682.
  • 4ALEXANDER G P. An algorithmic approach to adaptive state filtering using recurrent neural networks [ J ]. IEEE Transactions on Neural Networks, 2001,12(6) : 1411-1430.
  • 5FRANK P M. Fault diagnosisin dynamic system using analytical and knowledge based redundancy a survey and some new results[J]. Automatica, 1990,26(3) :459- 474.
  • 6KINGSBURY N G. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters[C]. In Proc 8th IEEE DSP Workshop, USA : Bryce Canyon UT, 1998.
  • 7JALOBEANU A, BLANC-FERAUD L, ZERUBIA J. Satellite image deconvolution using complex wavelet packets[J]. IEEE Trans on Image Processing ,2000,3(9) :809-812.
  • 8DONOHO D L. Denoising by soft-thresholding[J]. IEEE Trans on Information Theory, 1995,41(1) :617-627.
  • 9李春,安毓英,曾晓东.一种新的相位编码幅值调节联合变换相关器(英文)[J].光子学报,2003,32(3):327-331. 被引量:21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部