摘要
设R为含单位元的诺特滤环,G(R)为相应分次环.设M为R滤模,gr(M)为相应的分次G(R)模.Bj(?)rk探讨了M为良滤模与gr(M)为有限生成模二者的关系.当R为正滤环且G(R)为诺特环时,M为良滤模的充要条件是gr(M)为有限生成模.但只把对R的限制放宽到Zariski滤环,就难于断定这一结论是否正确了.具体地说,Bj(?)ry的问题如下:设R为Zariski滤环,M是有限生成R模且配备分离滤,则当gr(M)是有限生成G(R)模时,M是否为良滤模?
出处
《科学通报》
EI
CAS
CSCD
北大核心
1995年第23期2128-2130,共3页
Chinese Science Bulletin