摘要
本文对分布式迭代随机大系统给出了定性分析.对时不变线性、时变线性和非线性迭代随机大系统建立了关联均方收敛性判据.在所有孤立子系统都收敛的情形,只需选择子系统中适当的乘子,迭代随机大系统就能对任意互连项和在结构扰动下保持均方收敛性.
This paper gives a qualitative analysis for distributed iterative stochastie large-scale systems.Criteria are established for connective mean-square convergence of time-invariant linear,time-varying linear and nonlinear iterative stochastic large-scale systems.In case of all isolated subsystems to be convergent,the mean-square convergence of the iterative stochastic large-scale systems can be always guaranteed for any interconnection and under structural perturbstions,only by choosing the appropriate multipliers in the subsystems.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1995年第1期64-69,共6页
Control Theory & Applications
关键词
大系统
关连均方收敛性
迭代随机系统
large-scale system
connective mean-square convergence
iterative stochastic system