摘要
讨论未知但有界误差假设下的l1中心估计问题,提出了中心估计递推算法的理论基础,并据此设计了l1中心估计的递推算法。理论分析和数据仿真表明,与原有算法相比,递推算法可以显著减少计算量,提高估计速度,因而可应用于实时在线辨识。所给算法和结果是面向鲁棒控制的。
The problem in l1 central estimation with uncertainty but bounded measurement error is discussed in the paper. The recusive algorithm is proposed together with its basic theorem. The theoretical analysis and simulation results show the amount of calcutation can be reduced notably and the estimation process can be accelerated. Therefore, this kind of recusive algorithm can be used in on-line identification. The algorithm and results proposed here are robust control oriented.
出处
《控制与决策》
EI
CSCD
北大核心
1995年第4期361-364,共4页
Control and Decision
基金
国家自然科学基金
国家教委博士点基金
国家科委和浙江大学工业控制技术国家重点开放实验室联合资助
关键词
鲁棒控制
l1中心估计
递推算法
参数估计
uncertainty but bounded measurement error, worst -case identification, robust identification,robust control