摘要
应用神经网络系统理论,提出了煤矿顶板压力显现实时预报的自适应模式识别方法,它通过对井下实测压力曲线的记忆,可以预报出该顶板未来的矿压显现规律,包括来压步距和来压强度。实际应用表明,本方法可外推预报10个工作面推进循环的来压规律,来压强度的预报准确率达到93%,来压步距的预报准确率为100%。
An adaptive recognition approach for real-time prediction of rock behaviour was proposed by application of artificial neural network theory. It can predict the rules of future rock behaviour including the weighting interval and strength based on output of underground observation data. Practical experience indicates that this method can be applied to prediction of weighting in advancing cycles in ten faces by extrapolation with an accuracy of 93% for weighting strength and 100% for weighting interval.
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
1995年第5期455-460,共6页
Journal of China Coal Society
基金
煤炭科学基金
国家"八五"科技攻关
国家教委博士点基金