摘要
设G是k—连通无不科,S是G的子图.G中过S所有顶点的路称为S—路.证明了:若a3(S)≤k+1,则G含S—路,这里a3(S)为S的在G中两两距离至少为3的顶点的最大数目.推广了如下结论;若a(G2)≤k+1,则G是可迹的,这里G2为G的平方图.
Let G be a k-connected claw-free graph, and S a subgraph of G. A path in G is called an S-path if it contains all venices of S. In this paper, it is proved that G has an S -path if a3 (S)≤k + l, where a3 (S) denotes the maximum number of venices of S that are pairwise at distance at least three in G. The result that G is traceable if a(G2)≤k+l was extended. Where Gi is the square of G.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
1995年第1期35-40,共6页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金