摘要
设S是一个半群,本文主要得到如下几个结果:(1)令T是S的一个真子集,T’是T左S中的补集,则;(2)存在S的子集T,使得,当且仅当T=S;(3)通过实例说明未必存在子集T,使得.并给出了有子集T使得的某一类半群的刻划.
Let S be a semigroup,this paper mainly proves the following results: (1) Let T be a subset of S and T be supplementary subset of T in S,then;(2) There is a subset T of S so that PT= V if T=S;(3) Through some examples,this paper proves that there must not be a subset T of S so that,and gives the description of semigroups with such subsets.
出处
《南方冶金学院学报》
1995年第1期81-84,共4页
Journal of Southern Institute of Metallurgy
关键词
右同余
右零半群
群论
半群
Oehmke
right congruence,right annihilation semigroup,right regular band,σ-closed subset