摘要
结合亚纯函数的亏值,讨论了当高阶导数具有一个分担值或分担函数时两个亚统函数的等价性,得出两点结论:(1)设f与g是两个亚约函数,满足δ(∞,f)=δ(∞,g)=1.若对某个n≥1有f(n)与g(n)分担值1,且,则f(n)·g(n)≡1或f-g≡k。(2)设f与g为整函数,满足,若对某个n≥1,f(n)与g(n)分担值1,δ(0,f)>0且0为g的Picard例外值,则f≡g或。
The purpose of this paper is to study from deficient values the identity of two meromorphic functions, the higher derivatives of which share one value or one small function. The following results are obtained which improve some conclusions of Yi Hongxun's. (1) Let f and g be two meromorphic functions satisfying δ(∞,f) =δ(∞,g) =1. If f(n) and g(n) share one value 1 for any n≥1, and , then f(n)·g(n) 1 or f-g≡k, where k is the difference between some deficient values of f and g. (2) let log log log M(r,g)<1. If f(n) and g(n) f and g be two entire functions satisfying limsup share one value 1 for any n≥1, δ(0,f)>0 and g has a Picard's exceptional value 0, then f≡g or g≡beax, , where a and b are two constants.
出处
《南京航空航天大学学报》
CAS
CSCD
1995年第2期161-166,共6页
Journal of Nanjing University of Aeronautics & Astronautics
关键词
复分析
值分布论
半纯函数
亏值
complex analysis
value distribution theory
meromorphic function
deficient value
uniqueness