摘要
该文考虑了基于为n次Jacobi多项式)零点的扩充Grunwald插值算子,主要证明了扩充Grunwald插值算子在(-1,1)上内闭一致逼近连续函数且不可能在整个闭区间[-1,1]上一致逼近连续函数,并进一步表明扩充Grunwald插值算子在L1范数意义下收敛于连续函数。
The extended Grunwald interpolation based on the zeros of(1-x2)(x)(where) (x) is the n-th Jacobi polynomial and 1/2≤α,β<1) is considered.It ismainly shown that it uniformly converges to the continuous function just on any closed set not on whole interval [-1,1].Moreover,it is shown that it convergesto the continuous function on L1-norm.
出处
《南京理工大学学报》
CAS
CSCD
1995年第6期569-572,共4页
Journal of Nanjing University of Science and Technology
关键词
连续函数
函数逼近
Grunwald插值
插值算子
interpolation,Jacobi polynomials,unifom approxirnation,continuousfunctions
L1 approximation