摘要
证明了由于1968年提出的修正的Navier─Stokes方程可产生一个作用于一可分的Hilbert空间H上的单参数半群{V_t},算子V_t于t>0连续,于t>0紧。给出了{V_t}成为连续半群的充分条件。证明了此半群有非空的紧的不变的可吸引H中任何有界集的吸引子μ.对于H中任何有界不变集A(可以是μ),从A上出发的运动的决定模态的个数有限。如果A是H中的紧不变集(可以是μ),则V_t(t≥0)在A上可逆从而容许定义V_t=V ̄(-1)_t(t<0)使得{V_t,t∈R,A}是一连续群,即在经典意义下的动力系统。证明了H中任何紧不变集的Haus─dorff维和分维有限。
It is proved from the Modified Navier-Stokes equations proposed by O.A.Ladyzhenskaya in1968 1t is possible to derive a single parameter semigroup {V_t,t≥0,H}on a separable Hilbertspace H, where the operator V_t is continuous for t≥0 and compact for t>0. A sufficient conditionis given for V_t to be a continuous semigroup.It is also proved that this semigroup has a nonemptyminimal compact invariant attractor μ which can attract any bounded set in H.For any boundedinvariant set A (may be identical with μ), the number of determining modes for any motionstarting from A is finite. It is also proved that the Hausdorff dimension and the fractal dimensionfor any compact invariant set in H (may be identical with μ) are both finite.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1995年第3期235-246,共12页
Journal of Inner Mongolia University:Natural Science Edition
基金
内蒙古自然科学基金
关键词
半群
动力系统
决定模态
N-S方程
modified Navier-Stokes equations semigroup dynamical system attractor determining mode Hausdorff dimension fractal dimension