期刊文献+

高增益靶体点火的动力学过程分析 被引量:1

THEKINETICPROCESS ANALYSIS OF VOLUME THERMONUCLEAR IGNITION IN HIGH GAIN INERTIAL CONFINEMENT FUSON
下载PDF
导出
摘要 针对中心热斑点火和热核传播燃烧(简称中心点火)的高增益靶设计理论要求很高和技术上的难度很大,我们通过阻热层的设计,在高增益靶的整体点火和燃烧(简称体点火)设计上首先实现挡光系统的非稳定温度脱离,由平衡点火和燃烧逐步过渡到非平衡点火和燃烧,从而将驱动能量降到15MJ左右,实现了体点火和体燃烧。 AbstractThe central ignition and propagation burn(CIPB)is a great achievement for many year’sre-search in LLNL,it is also the best theory of target design until now. Recent years the volumeignition and volume burn(VIVB)has begun to receive a lot attention and investigation becauseof the great difficulties in CIPB.The direct non local thermodynamic equilibrium (non LTE)ignition(the threshold temper-ature is about 5keV)in VIVB demands too much ignition energy to practise it.In this paper agood heat resistance layer and a good inert layer as the shell of DT are used to make VIVBrealistic. An unstable non LTE state and the transition from LTE ignition and burn tonon LTE ignition and burn is discussed,and in this way the driving energy can be lowered to15MJ or so. The VIVB design is achieved and high gain fusion is obtained.In this paper, thethreshold conditions for temperature increading by compression,and for ignition and burn aregiven,Finally,a high gain and a low gain models for VIVB by computational simulation aregiven in this paper.
出处 《强激光与粒子束》 EI CAS CSCD 1995年第3期325-333,共9页 High Power Laser and Particle Beams
基金 国家自然科学基金
  • 相关文献

同被引文献18

  • 1Lindl J D. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys Plasmas, 1995, 2(11) : 3933-4024.
  • 2Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasrnas,2004, 11(2) : 339-491.
  • 3Haan S W, Lindl J D, Callahan D A, et al. Point design targets, specifications, and requirements for the 2010 Ignition Campaign on the Na tional Ignition Facility[J]. Phys Plasmas, 2011, 18: 051001.
  • 4Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J].Nature, 2014, 13008.
  • 5Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Phys Plasmas, 2014, 21:020501.
  • 6Varnum W S, Delamater N D, Evans S C, et al. Progress towards ignition with noncryogenic double-shell capsules[J]. Phys Rev Lett, 2000, 84(22): 5153-5155.
  • 7Amendt P A, Robey H F, Park H -S. Hohlraum-driven ignitionlike double shell implosions on the omega laser facility[J]. Phys Rev Lett, 2005, 94 : 065004.
  • 8Robey H F, Amendt P A, Milovich J L, et al. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the Omega laser facility and their scaling to NIF[J]. Phys Rev Lett, 2009, 103: 145003.
  • 9Amendt P, Colvin J D, Tipton R E, et al. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis[J]. Phys Plasmas, 2002, 9: 2221-2233.
  • 10Amendt P, Cerjan C, Hamza A, et al. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vac- uum hohlraums[J]. Phys Plasmas, 2007, 14: 056312.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部