摘要
本文讨论非线性反应-扩散系统中产生时-空有序结构的非唯一性和稳定性。基于“从双重稳定性到时间振荡和空间有序结构”的思想,研究了扩展布鲁塞尔模型(ExtendedBrusselator)的时-空行为。模型的总体分析和数值模拟表明,在适当的条件下模型可呈现非常丰富的多重稳定性现象,包括空间均匀的定态、空间均匀的时间振荡态和空间不均匀的定态之间的三重稳定性现象。
his paper discusses the nonuniqueness and stability of tempo-spatial patternsoccurring in nonlinear reaction-diffusion systems. Based on the idea 'from bistability totemporal oscillations and spatial patterns', the tempo-spatial behaviors of the model of Extended Brusselator are studied by global analysis method and numerical simulations. It is shown that under certain conditions the model is able to exhibit very rich phenomena of multistability, including the tristability between homogeneous stationary state,homogeneous temporal oscillatory state and stationary spatial patterns.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1995年第3期94-99,共6页
Journal of Tsinghua University(Science and Technology)
关键词
时-空有序结构
多重稳定性
反应扩散系统
reaction-diffusion system
tempo-spatial patterns
multistability
Hopf bifurcation
Turing biffurcation