摘要
讨论了基于扩充的第二类切比雪夫节点的Hermite插值的平均收敛的Erdos—Feldheim型定理
By H2n+1 (f;x) denote Hermite interpolation polynomial of degree≤2n+ 1 based on the extended Tchebyshev nodes of the second kind. They are obtained that Theorem 1 Suppose f(x) ∈cr[-1, 1],r≥1. If ω(f(r);δ) denotes the modulus of continuity of f(r) (x),then for any fixed integer p>0,Meanwhile,we have got Erdos-Feldheim type theorem.Theorem 2 If f(x) e∈cr[-1, 1],r≥1, then for any fixed integer p>0,
出处
《山东大学学报(自然科学版)》
CSCD
1995年第2期149-155,共7页
Journal of Shandong University(Natural Science Edition)