摘要
文中研究了一类带有Carleman位移项的一般形式奇异积分方程组,与之等价的是一个含有四个元素的边值问题.对其特征方程组,得到在某些条件下的Noether可解性结果;而对于含弱奇核项的一般形式方程组,则解决了其方程组的正则化问题,从而建立了广义Noether可解性定理.
In this paper, one will consider a class of these systems of singular integral equation with Carleman's shift, which are equivalent to a boundary value problem of quaternion numbers. For their eigen-equation systems, one will obtain Noether's solubility under some conditions. For general forms of equation systems with these terms of weak-singularity, one will resolve their regularization and establish the theorem of generalized Noether's solubility.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1995年第5期129-135,共7页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金
上海交通大学自然科学基金
关键词
Noether可解性
正则化算子
奇异积分方程
boundary value problem of quaternion numbers, correspounding equation systems, Noether's solubility, regularization operator