摘要
记为n维奥伦斯坦-乌伦贝克过程,X_j(t)由广义维纳积分,n来确定,其{B_j(t),t∈R ̄1}是相互独立且规范化的广义布朗运动过程。本文探讨了n维奥伦斯坦-乌伦贝克过程{X(t),t∈R ̄1)和随机泛涵向量f(X(t))的一些统计特性,这里f,f_1,…,f_n都是n元有界Borel可测函数。在此基础上再探讨随机泛函向量f(X(t))的预测向量,并给出一些关于预测向量以及格应的均方误差向量的解析表达式。
Ltx,be the n-dimensional Ornstein-Uhlenbeck processes,which are given by the following generallzed Wiener integralswhere{B_j(t),t∈ R ̄1},j=1,2,…,n,are mutually independent,normalized generalized Brownian motion processes. In this paper,the author deals with some statistical propertiesof the n-dimensional Omstein-Uhlenbeck processes {X(t),t∈R ̄1}and the stochastic functional vector f(X(t))=(f_1(X(t)),…,f_n(X(t))) ̄T,t∈R ̄1,where f,f_j,j=1,2,…,n,are bounded Borel measurable functions of n-varlables. And then the author discusses the non-linear predictor vector for the stochastic functional vector f(X(t))and presents some analytical formulas of the non-linear predictor vector and corresponding mean-square error vector.
出处
《沈阳化工学院学报》
1995年第1期56-63,共8页
Journal of Shenyang Institute of Chemical Technolgy
关键词
n维奥伦斯坦
乌伦贝克过程
预测向量
n-dimensional Ornstein-Uhlenbeck processes
generalized Wiener integral
generalzjed Brownian motion processes
stochastic functional vector
predictor vector