摘要
设{0x(t),t∈R ̄(+)}由维纳随矾积分所定义的四重马氏正态过程,这里{B(t),t∈ ̄(+)}是标准布朗运动过程。若随机过程{x(t)}被一有界fferel可测函数f所变换,则将得到随机泛函f(x(t)),即得到新的随机过程,把它记为Y(t),也就是说Y(t)=f(X(t)).作者在本文中首先粗略地研讨四重马氏过程的一些统计特性以及与此有关的问题。其次,对较简单一类Borel可测函数f,探讨随机泛函f(x(t))的最佳非线性预测量。
Let {x(t),t∈R ̄(+)}be a 4-ple Markov Gaussian process which is defined by theWiener integralwhere{B(t),t∈R ̄(+)}is a standard Brownian motion process.If the stochastic process{(t)}is transformed bV a bounded Borel measurable function f,then we obtain a stochasticfunctional f(x(t)),that is we shall get a new stochastic process which denoteS by Y(t),namely Y(t)=f(x(t))In this paper,the author at first roughly discussed some statistlcalproperties of the 4-ple Markov process{x(t)}and so forth.In addition, the author dealswith the best nonlinear predictors of the stochastic functionalsf(x(t))for some simpleBorel measurable functions f.
出处
《沈阳化工学院学报》
1995年第4期298-308,共11页
Journal of Shenyang Institute of Chemical Technolgy
基金
沈阳化工学院自然科学基金
关键词
四重马氏过程
马氏过程
统计性质
ple Markov process
Wiener stochastic integral
standark Browni-an motion process
stochastic functional
best nonlinear predictor