摘要
Jackson(1981)对一类特殊的偶图给出了其圈长的估计:设G是以(A,B)为顶点二分划的偶图,k=min{d(u)|u∈A)}≥2,2≤|A|≤k,|B|≤2k-2,则最长圈C(G)=2|A|.这里对上述结果进行了改进得到下述定理:设G是以(A,B)为顶点二分划的偶图,d(x*)=min{d(u)|u∈A}=k≥2,λ=min{d(u)|u∈A\{x*}≥k,2≤|A|≤λ,|B|≤λ+k-2,则C(G)=2|A|.容易验证Jackson的结果是这个定理的一个特例.
Jackson (1981) gave an estimation of tbe circumferences of some special kinds of bipartite graphs:Let G be a bipartite graph with bipartition (A, B), k=min {d (u)|u∈A)} ≥ 2,≤ |A |≤k, |B|≤2k - 2, then the longest circles C (G) = 2 |A |. By improving this result the next theorem is proved: Let G be a bipartite graph with bipartition (A, B), d (x* ) =min {d (u)|u∈A} =k≥2, λ=min {d (u)|u∈A\ {x* } }≥k, 2≤|A|≤λ, |B|≤λ+k-2. then C (G) =2|A|. It is easy to prove that Jackson's result is a special example of this theorem.
关键词
偶图
最长圈
二分划
图
bipartite graph,longest circle, bipartition