摘要
本文研究了构造与波速成像中波动方程逼近的几种高价差分方法,论证了其计算稳定性条件,分析了频散误差。在差分逼近中引入了自由系数节点,从而提高了计算的稳定性。理论分析表明,在构造与波速成像中采用高阶差分方法,可以减小频散误差、提高计算效率与计算精度、获得满意的效果。
I describe some high-order difference methods for wave equation approximation in structure and velocity images,point out their stability conditions and analyse the frequency dispersion error, Free coefficient nodes are used in difference approximation to improve computation stability. It is theoretically shown that the application of high-order difference method in structure and velocity images decreases frequency dispersion error,but improves effect and accuracy of computation,resulting in satisfactory effect.
出处
《石油地球物理勘探》
EI
CSCD
北大核心
1995年第4期454-464,共11页
Oil Geophysical Prospecting
基金
国家自然科学基金
中国科学院资助
中国石油天然气总公司资助
大庆石油管理局资助
关键词
地震资料
构造成像
高阶差分
地震勘探
seismic data, structure image, high-order difference, stable condition,frequency dispersion error,computation accuracy