摘要
本文讨论了依赖特定边界条件的最一般的边值线性系统 x(t)=A(t)x(t)+B(t)u(t) y(t)=C(t)G(t,0)Φ(0,t) Mx(0)+Nx(T)=η的能控性、能观性和对偶性的概念。这和Krener介绍的一系列概念是不同的。本文还建立了与初值线性系统相平行的,关于边值线性系统的能控性、能观性和对偶性理论,
This paper discussed some concepts of controllability, observability and duality of the most general oundary value linear systems depending on the particular boundary conditions x(t) = A(t)x(t) + B(t)u(t) y(t) = C(t)G(t,0) Φ(0,t)Mx(0) + Nx(T) = η The concepts are distinguishable from those introduced by Krener, The whole theory of the controllability, observability and duality contrasted with initial value linear systems is estabilished.
关键词
边值线性系统
能控性
能观性
boundary value linear system
contorllability
observability
duality