摘要
本文考虑了椭圆曲线Γ_D:X ̄3+Y ̄3=DZ ̄3.以LD(s)记Γ_D的HeckeL-级数.由L_D(s)的解析延拓我们将L_D(1)展成有限项之和,然后通过建立y ̄2=x ̄3-16的一个处处有好的约化的模型,证明了当p≡2或5(mod 9)时,L_(p ̄2)(1)≠0.这些结果是对Birch和Swinnerfon-Dyer猜想的支持。
In this paper,we consider the elliptic curvesΓ_D:X ̄3+Y ̄3=DZ ̄3. Let L_D(s)be the Hecke L-series of Γ_D. Using the analytic continuation of L_D(s),we expand L_D(1)as a sum of finite terms. Then by establishing y ̄2=x ̄3-16 as a model which has good reduction everywhere we prove that for p≡2,5(mod 9),L_p(1)≠0 and L_p ̄2(1)≠0.These results may give:some supportable evidences of Birch and Swinnerton-Dyer conjecture。
出处
《数学进展》
CSCD
北大核心
1995年第5期439-443,共5页
Advances in Mathematics(China)