摘要
本文我们将对一类完备Riemann流形上的有界调和函数所组成的线性空间的维数的上界进行估计,同时给出了一个关于测地球体积的Bishop-Gromov型体积比较定理。
In this paper,we consider the dimension of the space of bounded harmonic functionson a class of Riemannian manifolds. An upper bound of the dimension is obtained. In themeanwhile, a volume comparison theorem of Bishop-Gromov type on the geodesic balls is alsogiven on such kinds of manifolds
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1995年第2期171-181,共11页
Acta Mathematica Sinica:Chinese Series