摘要
对可分离的局部凸空间(X,τ),本文建立了相应的局部凸空间(Qx,Tx),利用它证明了当(X,τ)满足某些条件时(赋范空间满足这些条件),EX相对弱紧E相对弱列紧E相对弱可数紧,从而推广了Eberlein等人的工作,证明了在空间D(R ̄n),(R ̄n)和D_(LP),1<p<∞上前述三种弱紧性等价.
Let(X,τ)is a T_2 locally convex space. we can produce a new T_2 locally convexspace(Q_x,T_x)which depends on(X,τ). Using(Q_x,T_x),we have proved that if(X,τ)sufficessome conditions(we know normed space suffices these conditions),then, for E X,we have:Eis a relatively weakly compact set E is a relatively weakly sequentially compact set E is arelatively weakly countable compact set.As an example,we have proved that the basic function space D(R ̄n)suffices these conditions,thelefore,the mentioned three weakly compacts are equavalence on D(R ̄n).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1995年第5期632-635,共4页
Acta Mathematica Sinica:Chinese Series
关键词
局部凸空间
相对弱紧
相对弱列紧
相对弱可数紧
locally convex space,relatively weakly compact,relatively weakly sequentiallycompact relatively weakly countable compact,semi-norm family, basic function space