摘要
本文研究了球面上三种PeetreK-模与最佳逼近的关系,建立起它们之间的若干强型和弱型不等式.此外,还讨论了K-模与光滑模的等价性.
There are various ways to describe the smoothness of functions on the sphere and,consequently, the best approximation may be estimated by different moduli of smoothness. An-other powerful modulus is Peetre’s K-modulus.Indeed, for functions on the sphere the Peetre K-moduli seem to be easier to handle. The aim of the paper is to present relationships between different K-moduli and best approximation, and to show that Peetre’s modulus is , in general, equivalent to a suitable modulus of smoothness.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1995年第5期589-599,共11页
Acta Mathematica Sinica:Chinese Series
基金
中国自然科学基金
关键词
光滑模
最佳逼近
K模
球面函数
d-sphere, Petre’s K-modulus, modulus of smoothness, best approximation