摘要
定义于区间I=[-1,1]上的实值函数f,若它的一切Larange插值多项式在BMO(I)范数下一致有界,则称f为完全BMO-有界函数.
A real-valued function f defined on I =[-1, 1] is said to be totally BMO-bounded if there exists a positive constant M such that ‖P‖BMO(I)≤ M for eachLagrange interpolant p of f. This class of functions is studied here.
关键词
有界函数
插值多项式
完全有界函数
BMO范数
Lagrange interpolant, inverse interpolation, totally BMO-bounded func-tions