摘要
本文用初等方法证明了如果在方程中,{ (z_1,z_2)}全是z_1和z_2的多项式,且| (z_1)z_2、)| (z_1,z_2)≠0.当存在b>O使得时,此方程的任一非零解是非有理函数,其中D={|z_1|=r,|z_2|=r/2b,z_1,z_2∈C ̄2}.
he linear partial equation with polynomial coefficientswhere {}are polynomials in the z_1 and the z_2 ≡u(z_1,z_2)and.(1) can has the soluin of nonzero rati-onl function.For examPle,the equationhas a solution l-1/(z_1+z_2) ̄2.Therefore to find the condition of the solutionswhat all be ron-rationl functios is interest.Let D_r={|Z_1|=R,|Z_2|=R/2b,z_1,z_2∈c ̄2}.We have
出处
《数学杂志》
CSCD
北大核心
1995年第1期115-118,共4页
Journal of Mathematics